Vocabulary: Bits and Pieces 1

Concept

Understanding Fractions as Parts of a Whole: This meaning of "fraction" focuses on partitioning an object or a set of objects into equal size parts or groups and making a comparison of some parts to the whole object or set. The numerator (top of the fraction) indicates the number of parts chosen, and the denominator (bottom of the fraction) indicates the number of parts in the whole. Thus the denominator indicates the size of the parts.

Understanding Fractions as Measures of Quantities: This meaning of "fraction" focuses on a fraction as a number, "between" whole measures.
Understanding Fraction as an Indicated Division:
$\frac{a}{b}$ can be evaluated by doing the computation $a \div b$. This makes a link between decimals and

Example

If there are 7 girls, 8 boys and 18 adults in the audience at a school play then $\frac{7}{33}$ of the audience are girls. The whole is the audience ("of the audience"), each person is a "part" and the girls comprise 7 parts out of 33 parts. 7 is the numerator and 33 is the denominator.

If we have to share a candy bar with 4 sections (the whole) between 3 people we need to subdivide the whole into enough equal parts to make this possible. The parts have to be the same size, not shape.

Each person gets $\frac{1}{3}$ or $\frac{4}{12}$ of the candy bar. $\frac{1}{3}$ indicates the bar is divided into 3 parts, and each person gets 1 part. $\frac{4}{12}$ indicates that the bar is divided into 12 parts and each person gets 4 parts. (There are other ways to arrange the 4 parts.)

John's father worked $7 \frac{1}{2}$ hours of overtime this week.

Sharing 12 dollars among 3 people implies a division, with a whole number answer. Likewise sharing 3 dollars among 12 people (or 3 apples among 12 people) implies dividing the whole by 10 nn nenh nomenn nota 1 nfthnwihaln Thin
fractions. For example, $\frac{3}{8}=3 \div 8=0.375$.

Equivalence of Fractions:

Fractions may have different names but represent equal values or equal parts. Common factors and common multiples help to find other way to name the same fractional part.

Comparison of fractions: Fractions which represent parts of the same whole, or quantities, can be compared and ordered by size.
Benchmark fractions, such as $\frac{1}{4} . \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}$, offer a quick way to compare and order.
Common multiples are helpful in creating common denominators, which makes comparison simpler.

Mixed Numbers and Improper Fractions:

 represent quantities that may not be a whole number, but are greater than 1.
Understanding and Comparing Decimals:

12 so each person gets $\frac{1}{12}$ of the whole. This means dividing the whole (3 dollars or 3 apples) into 12 parts and giving 1 part ($\frac{1}{4}$ of apple, or $\$ 0.25)$ to each person.

6 and 9 have a common factor of $3 . \frac{6}{9}$ is the same as (2 groups of 3) /(3 groups of 3) and can be rewritten as $\frac{2}{3}$.

Compare $\frac{3}{7}$ and $\frac{5}{9} \cdot \frac{3}{7}$ is less than $\frac{1}{2}$ while $\frac{5}{9}$ is more than $\frac{1}{2}$. So $\frac{5}{9}>\frac{3}{7}$.

Which is larger and what is the distance between $\frac{5}{6}$ and $\frac{7}{9}$? 18 is a multiple of both denominators, 6 and 9 . Renaming these fractions so they have the same denominator, 18, gives us $\frac{5 \times 3}{6 \times 3}$ or $\frac{15}{18}$ for the first fraction, and $\frac{7 \times 2}{9 \times 2}$ or $\frac{14}{18}$ for the second fraction. So the second fraction is smaller, and the distance between the fractions is $\frac{1}{18}$.
$\frac{15}{4}$ is an improper fraction. $\frac{4}{4}$ would be a whole so $\frac{15}{4}$ is 3 wholes and $\frac{3}{4}$.
$3 \frac{3}{4}$ is a mixed number, partly a fraction ($\frac{3}{4}$) and partly a whole number (3).

Decimals are special fractions with denominators of 10 and powers of 10 . Since the decimal place indicates the power of 10 in the denominator this is a natural extension of place value for whole numbers.

Understanding and comparing percents:

Percents are fractions with denominator 100. Percents are useful when we want to compare fractional parts of two wholes that are different sizes.

Connecting Fractions and Decimals and

 Percents: Various models and strategies facilitate changing representations from decimal to fraction to percent easier.$\frac{1}{10}$ is exactly the same as $0.1 ; \frac{1}{100}$ is exactly the same as 0.01 . Thus, 256.182 means 256 and $\frac{182}{1000}$ or 2 hundreds +5 tens $+6+\frac{1}{10}+$ $\frac{8}{100}+\frac{2}{1000}$.
$0.05>0.009$ because $\frac{5}{100}>\frac{9}{1000}$. Or we could rewrite both as 0.050 and 0.009 , so we have to compare $\frac{50}{1000}$ and $\frac{9}{1000}$.

Which pays a greater part of their earnings in tax: a person who earns $\$ 1,000,000$ and pays $\$ 90,000$, or a person who earns $\$ 48,000$ and pays $\$ 12,000$ in tax? The two fractions are $\frac{90000}{1000000}$ or $\frac{9}{100}$, and $\frac{12000}{48000}$ or $\frac{1}{4}$ or $\frac{25}{100}$. As percents these are 9% and 25%. So the second person pays a larger part of his earnings.

A hundreds grid, representing the whole, allows students to represent fractions, decimals (to the second decimal place) and percents. The shaded area below represents $\frac{4}{5} .0 .80$, or 80%.

