Concept	Example			
Organized list a list, usually of	1.			
combinations, in which the logic in the order makes it possible to check that the list is complete	How many different outfits can we put together from 3 shirts (S, T, U), 3 pairs of pants (P, Q, R), and 2 hats (H, I)?			
Some issues to consider in	If we make an organized list we see there are 18			
making the list is whether order	choices. Below are all the outfits that use shirt, S.			
allowed	Shirt	Donta	Hat	Organizad
anowed.			Паі	List
	5, 1, U S	Г, <u>Q</u> , <u>к</u>	п, і ц	SDU
	5	P D	п	
	5	P		SPI
	5	Q	П	SQN
	5	Q		SQI
	5	K D	П	SKI
	5	ĸ	1	SKI
	SRISRIAt this point in the list we see that, starting with choice S for a shirt, and choice P for pants, there are 2 ways to complete the outfit, H or I. Likewise starting with choice S for shirt and Q for pants there are 2 ways to complete the outfit. And starting with "SR" there are another 2 ways. This completes all 6 choices, starting with choice S for a shirt.Now we start with choice T for a shirt and get: TPH, TPI, TQH, TQI, TRH, TRI. 6 choices.And lastly we start with choice U for a shirt, and get; UPH, UPI, UQH, UQI, URH, URI. 6 choicesThere 18 choices in all.2.How many ways can we choose 4 numbers from 0 to 9, to make a lock combination? This time we can have repeats, and order does matter. For example, we can have 3, 4, 4, 1 as a combination. And 4, 4, 3,1 would be a different combination. (In fact, when order does matter the technical word for this is a permutation, but the			

Clever Counting: Concept with Explanation

	1^{st}	2^{nd}	3 rd	4^{th}	Organized
	choice	choice	choice	choice	list
	0	0	0	0	0000
	0	0	0	1	0001
	0	0	0	2	0002
	0	0	0	3	0003
	0	0	0	4	0003
	0	0	0	5	0005
	0	0	0	6	0006
	0	0	0	7	0007
	0	0	0	8	0008
	0	0	0	9	0009
	0	0	1	0	0010
	0	0	1	1	0011
	0	0	1	2	0012
	0	0	1	3	0013
					etc
	The first	st 10 choic	es start wi	ith 0,0,0, a	nd run
	through all 10 choices for the 4 th position. The				
	next 10	choices st	tart with 0	, 0, 1 etc.	The list is
	too long to complete here. But because it is				
	organiz	ed we can	see how t	o complet	e it.
	There w	would be 1	0 choices	starting 00)2,
	10 choices starting 003 etc., so 100 choices				
	starting 00 There would be another 100 choices starting				
	01	And anoth	her 100 ch	oices starti	ing
	02	Etc.			
	So 100	0 choices s	starting wi	th	
	0				
	There w	would be a	nother 100	00 choices	starting
	1	. And anot	her 1000 s	starting	
	2	, and so on	l .		
	Making	g 10,000 cl	noices in a	II. (The c	hoices are,
	ın fact,	0000 to 99	199.)		

Counting Tree a visual way of making an organized list of combinations of options, where the first level indicates the first choice to be made, and the branches indicate succeeding choices, given the first choice has been made.	3. We can use a tree diagram as an alternative to the table and list in example 1. Tree diagrams are useful to organize your thinking. For situations where there are many choices the complete tree diagram gets unwieldy. Shirt Pants Hat $ \begin{array}{c} P \\ P \\ P \\ H \\ SQH \\ S$
	 4. Suppose a restaurant offers 3 side dishes, from a list of 4: sweet corn, mashed potatoes, coleslaw, hushpuppies. How many ways can a customer choose 3 sides? Since there is no prohibition on choosing repeats it is possible that a customer would choose coleslaw for all 3 sides. Also we have to consider order. Is coleslaw, sweetcorn and hushpuppies a different choice from hushpuppies, sweetcorn and coleslaw? No. So in this situation, repeats are allowed and order does not matter. The tree diagram below shows there are 16 ways to combine 3 sides, starting with sweet corn, but that some of these are actually the same choices. The redundant combinations have been crossed out, leaving 10 different combinations of side dishes.

	combinations are added. And if you start with hushpuppies only 1 new combination is added.
	combinations of side dishes.
Fundamental Counting Principle states that if a task involves a sequence of k choices, where n ₁ is the number of ways the first stage or event can occur and n ₂ is the number of ways the second stage or event can occur after the first stage has occurred, and so one, then the total number of different ways the task can occur is: (n ₁)(n ₂)(n ₃)(n ₄)(n _k)	 5. If you examine the organization in example 1 and 3 you can see that there are 3 different slots to fill: <u>Shirt, Pants, Hat</u> Each of these slots can be filled a particular number of ways: <u>3</u>, <u>3</u>, <u>2</u>. Studying the list and tree you can see that the total number of ways to combine these choices is the product of these: (3)(3)(2) = 18 choices. 6. Applying the Fundamental Counting principle to the restaurant side dishes example, #4, we would have to say there are 4 ways to fill each slot since choosing the same dish more than once is allowed: <u>first choice, 2nd choice, 3rd choice</u>. This would give a total of (4)(4)(4) = 64 choices. But the tree diagram analysis started in example 4 leads to the answer 20 choices. What has gone wrong? Well, the Counting Principle tells us the total number of ways we can combine sides, but does not tell us which of these are actually different. Remember that choosing SMC is the same as choosing SCM. We need a way to eliminate all the combinations. If we make a list of all 64 choices some will occur 6 times, and some will occur 3 times. So, the Fundamental Counting Principle is only the beginning step in analyzing this problem.
Permutation of k items from a list of n items, where order DOES matter, can be achieved a specific number of ways. For example, choosing 3 students from a group of 10, to perform 3 specific classroom tasks, can be achieved	 7. How many permutations (combinations) are there of 3 side dishes sweet corn, coleslaw, mashed potatoes if you can not choose the same dish twice and order matters? This time we are choosing 3 side dishes from 3 side dishes. Making a tree we have:

permutations can be listed in an organized list, or on a tree diagram, and then counted.

Note: when order is NOT important the technical word for this is a **combination**. In the student text for *Clever Counting* the word **Permutation** is not used. Instead the text uses **Combination** for both situations, but states when order is important and when it is not. See below.

Using the Fundamental Counting Principle we have (3)(2)(1) or 6 ways to combine S, C, and M if we do not use any choice more than once, and if the order matters, that is SCM is considered different from MCS. (In reality we would not consider SCM different from MCS, but the fact that there are 6 ways to permute any three side dishes is helpful in determining how many duplicates there will be among a list of combinations of 3 side dishes if order does NOT matter.)

8.

How many permutations are there of 3 side dishes chosen from a list of 4, if you can not choose the same dish twice and if the order matters? There will be 4 choices for the first dish, 3 for the 2^{nd} , and 2 for the 3^{rd} .

Using the Fundamental Counting Principle there will be (4)(3)(2) = 24 ways to combine 3 side dishes, if you can not choose the same dish twice, and if the order matters.

Now, putting the ideas from examples 7 and 8 together we can see that there are 24 ways to combine 3 dishes if order matters, but that each selection of 3 dishes will in fact be repeated 6 times, so only $24 \div 6 = 4$ distinct ways of choosing 3 dishes from 4 actually exist if order does NOT matter. These are SMC, SMH, SCH, MCH.

 (Notice that example 4 allowed the same item to be chosen, so the final answer for example 4 was not the same as the answer for example 8.) 9. How many permutations are there of 3 numbers chosen from 1, 2, 3, 4, 5 if there are no repeats of numbers and order matters? We have 3 slots to fill. There are 5 choices for the 1st slot, and 4 choices for the 2nd choice, and 3 choices for the 3rd choice. There are (5)(4)(3) = 60 ways to permute 3 numbers chosen from a list of 5.
10.
How many ways can we choose 3 students from a class of 10 to fill 3 class positions (treasurer, secretary, president)? There are 10 ways to fill the treasurer position, leaving 9 ways to fill the secretary position, and 8 ways to fill the president position. Thus there are $(10)(9)(8) = 720$ ways to fill these positions. Note this is a different question from asking how many ways there are to choose 3 students from a class of 10 if order does NOT matter. See example 11 below.
Notice that for examples 8, 9 and 10 we used the Fundamental Counting Principle to find the number of permutations (or, combinations in which order matters). This leads us to the formula that the number of ways to choose 3 items from a group of n items, assuming no repeated choices, and assuming that order matters, is: (n)(n-1)(n-2).
And the number of ways to choose 4 items from a group of n items is : (n) $(n - 1)(n - 2)(n - 3)$.
In general, the formula for the number of ways to choose k items from a group of n items, with no repeats, and where order matters, is: (n)(n - 1)(n - 2)(n - 3)(n - k + 1).

Combination of k items from a	11
list of n items where order is	How many ways are there to choose 3 students
NOT important can be achieved	from a group of 10 if no student is chosen more
in a specific number of ways For	than once and order does NOT matter?
example choosing 3 students	Starting with the Fundamental Counting Principle
from a group of 10, where no	we have $(10)(9)(8) = 720$ ways to choose 3
student is chosen more than once	students from a group of 10. But some of these
can be achieved a specific number	are reneats. Since any 3 items can be arranged in
of ways. The combinations can	6 different ways (see example 7) we know that
be listed in an organized list or on	each arrangement in our 720 ways has been
a tree diagram and then counted	duplicated 6 times. So there are in fact $720 \div 6 =$
When order is important the	120 different ways to choose 3 students from a
tachnical word to use is	group of 10
Permutation See above	group of to.
remutation. See above.	10
	12. Γ is define we have a factor of A with A is the same have
	Fina the number of ways that 4 state atsness can be
	chosen from a list of 5 if there are no repeats and
	if order does NOT matter, that is find the number
	of combinations of 4 items from a list of 5.
	we could start with the Fundamental Counting
	Principle, but we have seen that this does not take
	duplicates into account. So we could go back to
	an earlier idea and make an organized list of all
	the ways to choose 4 dishes. Let's call the list of
	5 side dishes A, B, C, D, E. The list of
	combinations of 4 would be
	ABCD, ABCE, ABDE (these are all the
	combinations that start AB)
	ACDE (the only combination that starts AC)
	We can now search for combinations that start
	with B, but we should not include any that contain
	an A, because we already listed all the
	possibilities with an A.
	This adds BCDE to the list, making 5
	combinations all together.
	(You should think about why we can't include
	BACD or BEDC or CABD or CBDE or any other
	combination to this list.)
	Note: There is a way to use the Fundamental
	Counting Principle in example 11. IF we can
	figure out how many duplicates that would create.
	The Fundamental Counting Principle tells us that
	there are $(5)(4)(3)(2) = 120$ ways to choose 4

	items from a list of 5, if there are no repeats and if the order matters. Now each set of 4 side dishes can be re-ordered in several ways, all duplicates. How many ways can we re-order 4 dishes? Well this is the same as asking how many ways there are to fill 4 slots from a list of 4 items, if order matters. And this would be $(4)(3)(2)(1) = 24$. So in the 120 ways of selecting 4 dishes from a list of 5, where order matters, each combination of 4 dishes is duplicated 24 times. If we want to eliminate the duplications we compute $120 \div 24 =$ 5. Notice that this answer was also figured out by making a list. We don't have to use formulas to figure out answers.
Factorial a shorthand notation for a multiplication process. For example, 3! (read "3 factorial") means (3)(2)(1) and 4! = (4)(3)(2)(1) n! = (n)(n - 1)(n - 2)(3)(2)(1)	 12. 12. The Fundamental Counting Principle says that the number of ways to choose 4 items from a group of 6 items is (6)(5)(4)(3). Write this using factorial notation. 6! is (6)(5)(4)(3)(2)(1). So, (6)(5)(4)(3) = 6! ÷((2)(1)) = 6! ÷ 2! Note: We can use factorial notation to write a formula for the number of permutations of k items from a group of n items (that is the number of combinations of k items, with no repeats, and where order matters). The Fundamental Counting Principle gives us the answer; (n)(n - 1)(n - 2)(n - 3)(n - k + 1). Rewriting this with factorial notation: The number of permutations of k items from a group of n a gro
Network is a diagram, or model, made up of nodes and edges which represent choices in a particular context. The decisions about which nodes are joined by edges, and by how many edges, are governed by the context of the situation.	13. James can send instructions to his executive secretary by phone, email or fax. The secretary can assign tasks to the office assistants by phone or email. Draw a network to show the number of ways that James's instructions can reach the office assistants.

	p J e f
	We can trace 6 different routes from J to A.
	question, or use the Fundamental Counting
	Principle.
Note: This unit is designed to help	
student develop Combinatorial	
Reasoning , that is, to know	
which questions to ask about a	
situation involving combinations	
of choices, such as, "Does order	
matter?" and to be able to create	
and use a representation, such as a	
list or tree or other model, to be	
able to count the combinations.	