

	combinations are added. And if you start with hushpuppies only 1 new combination is added. You should find that there is a total of 20 different combinations of side dishes.
Fundamental Counting Principle states that if a task involves a sequence of k choices, where n_{1} is the number of ways the first stage or event can occur and n_{2} is the number of ways the second stage or event can occur after the first stage has occurred, and so one, then the total number of different ways the task can occur is: $\left(n_{1}\right)\left(n_{2}\right)\left(n_{3}\right)\left(n_{4}\right) \ldots\left(n_{k}\right)$	5. If you examine the organization in example 1 and 3 you can see that there are 3 different slots to fill: Shirt, Pants, Hat Each of these slots can be filled a particular number of ways: $3,3,2$ Studying the list and tree you can see that the total number of ways to combine these choices is the product of these: $(3)(3)(2)=18$ choices. 6. Applying the Fundamental Counting principle to the restaurant side dishes example, \#4, we would have to say there are 4 ways to fill each slot since choosing the same dish more than once is allowed: first choice, $2^{\text {nd }}$ choice, $3^{\text {rd }}$ choice. This would give a total of $(4)(4)(4)=64$ choices. But the tree diagram analysis started in example 4 leads to the answer 20 choices. What has gone wrong? Well, the Counting Principle tells us the total number of ways we can combine sides, but does not tell us which of these are actually different. Remember that choosing SMC is the same as choosing SCM. We need a way to eliminate all the combinations that are actually duplicates of other combinations. If we make a list of all 64 choices some will occur 6 times, and some will occur 3 times. So, the Fundamental Counting Principle is only the beginning step in analyzing this problem.
Permutation of kitems from a list of n items, where order DOES matter, can be achieved a specific number of ways. For example, choosing 3 students from a group of 10 , to perform 3 specific classroom tasks, can be achieved a number of ways. The	7. How many permutations (combinations) are there of 3 side dishes sweet corn, coleslaw, mashed potatoes if you can not choose the same dish twice and order matters? This time we are choosing 3 side dishes from 3 side dishes. Making a tree we have:

permutations can be listed in an organized list, or on a tree diagram, and then counted. Note: when order is NOT important the technical word for this is a combination. In the student text for Clever Counting the word Permutation is not used. Instead the text uses Combination for both situations, but states when order is important and when it is not. See below.	Using the Fundamental Counting Principle we have (3)(2)(1) or 6 ways to combine S, C, and M if we do not use any choice more than once, and if the order matters, that is SCM is considered different from MCS. (In reality we would not consider SCM different from MCS, but the fact that there are 6 ways to permute any three side dishes is helpful in determining how many duplicates there will be among a list of combinations of 3 side dishes if order does NOT matter.)

Combination of k items from a list of n items, where order is NOT important, can be achieved in a specific number of ways. For example, choosing 3 students from a group of 10 , where no student is chosen more than once, can be achieved a specific number of ways. The combinations can be listed in an organized list or on a tree diagram, and then counted. When order is important the technical word to use is Permutation. See above.	11. How many ways are there to choose 3 students from a group of 10 if no student is chosen more than once and order does NOT matter? Starting with the Fundamental Counting Principle we have $(10)(9)(8)=720$ ways to choose 3 students from a group of 10 . But some of these are repeats. Since any 3 items can be arranged in 6 different ways (see example 7) we know that each arrangement in our 720 ways has been duplicated 6 times. So there are in fact $720 \div 6=$ 120 different ways to choose 3 students from a group of 10 . 12. Find the number of ways that 4 side dishes can be chosen from a list of 5 if there are no repeats and if order does NOT matter, that is find the number of combinations of 4 items from a list of 5 . We could start with the Fundamental Counting Principle, but we have seen that this does not take duplicates into account. So we could go back to an earlier idea and make an organized list of all the ways to choose 4 dishes. Let's call the list of 5 side dishes A, B, C, D, E. The list of combinations of 4 would be $\mathrm{ABCD}, \mathrm{ABCE}, \mathrm{ABDE}$ (these are all the combinations that start AB) ACDE (the only combination that starts AC) We can now search for combinations that start with B , but we should not include any that contain an A, because we already listed all the possibilities with an A. This adds BCDE to the list, making 5 combinations all together. (You should think about why we can't include BACD or BEDC or CABD or CBDE or any other combination to this list.) Note: There is a way to use the Fundamental Counting Principle in example 11, IF we can figure out how many duplicates that would create. The Fundamental Counting Principle tells us that there are $(5)(4)(3)(2)=120$ ways to choose 4

	items from a list of 5, if there are no repeats and if the order matters. Now each set of 4 side dishes can be re-ordered in several ways, all duplicates. How many ways can we re-order 4 dishes? Well this is the same as asking how many ways there are to fill 4 slots from a list of 4 items, if order matters. And this would be $(4)(3)(2)(1)=24$. So in the 120 ways of selecting 4 dishes from a list of 5 , where order matters, each combination of 4 dishes is duplicated 24 times. If we want to eliminate the duplications we compute $120 \div 24=$ 5 . Notice that this answer was also figured out by making a list. We don't have to use formulas to figure out answers.
Factorial a shorthand notation for a multiplication process. For example, 3! (read " 3 factorial") means (3)(2)(1) and $\begin{aligned} & 4!=(4)(3)(2)(1) \\ & n!=(n)(n-1)(n-2) \ldots(3)(2)(1) \end{aligned}$	12. The Fundamental Counting Principle says that the number of ways to choose 4 items from a group of 6 items is (6)(5)(4)(3). Write this using factorial notation. $\begin{aligned} & 6!\text { is }(6)(5)(4)(3)(2)(1) \\ & \text { So, }(6)(5)(4)(3)=6!\div((2)(1))=6!\div 2! \end{aligned}$ Note: We can use factorial notation to write a formula for the number of permutations of k items from a group of \mathbf{n} items (that is the number of combinations of k items, with no repeats, and where order matters). The Fundamental Counting Principle gives us the answer; $(n)(n-1)(n-2)(n-3) \ldots(n-k+1)$. Rewriting this with factorial notation: The number of permutations of k items from a group of n items is : $n!\div(n-k)$!
Network is a diagram, or model, made up of nodes and edges which represent choices in a particular context. The decisions about which nodes are joined by edges, and by how many edges, are governed by the context of the situation.	13. James can send instructions to his executive secretary by phone, email or fax. The secretary can assign tasks to the office assistants by phone or email. Draw a network to show the number of ways that James's instructions can reach the office assistants.

	We can trace 6 different routes from J to A. We could also make a list or tree to answer this question, or use the Fundamental Counting Principle.
Note: This unit is designed to help student develop Combinatorial Reasoning, that is, to know which questions to ask about a situation involving combinations of choices, such as, "Does order matter?" and to be able to create and use a representation, such as a list or tree or other model, to be able to count the combinations.	

