## Covering and Surrounding: Homework Examples from ACE Investigation 1: Questions 5, 8, 21 Investigation 2: Questions 6, 7, 11, 27 Investigation 3: Questions 6, 8, 11 Investigation 5: Questions 15, 26

| ACE Question                                                                                                                                                                          | Possible Answer                                                                                                                                                                                                                                                                     |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Inv 1                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                     |  |  |  |
| 5. Draw 2 different shapes, each with an area of 15 square units and perimeter of 16 units.                                                                                           | 5. This question reinforces the idea that the relationship between perimeter and area is not simple.                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                       | The obvious answer is a rectangle with<br>length 5 and width 3.<br>$P = 5 + 3 + 5 + 3$ $= 16.$ $A = 5 \times 3$ $= 15.$                                                                                                                                                             |  |  |  |
|                                                                                                                                                                                       | But if students use their experiment with<br>square tiles they can come up with other,<br>non-rectangular, arrangements of 15 square<br>tiles.                                                                                                                                      |  |  |  |
|                                                                                                                                                                                       | P = 4 + 4 + 3 + 1 + 1 + 3 = 16. Area = 15 square units.                                                                                                                                                                                                                             |  |  |  |
| 8. Copy the design onto grid paper. Add 6<br>squares to make a new design with a perimeter<br>of 30 units. Explain how the perimeter<br>changed as you added new tiles to the figure. | 8. We need to reduce the perimeter while<br>increasing the area. Students learned that<br>more "compact" figures can cover the same<br>area without increasing the perimeter. This<br>idea means that they have to "fill in" some<br>of the blank space in the center of the shape. |  |  |  |





| piece onto the opposite edge, making the straight edges match. | rearrange the pieces we will still cover the<br>same area, though the actual shape looks<br>different. |  |  |  |  |  |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Are the area and perimeter of her new figure                   |                                                                                                        |  |  |  |  |  |
| the same as, less than, or greater than the area               | Students often think that if the areas are the                                                         |  |  |  |  |  |
| and perimeter of the original figure? Explain.                 | same the perimeters must be the same. The                                                              |  |  |  |  |  |
| and permeter of the original figure. Explain.                  | other misconception they have is that the                                                              |  |  |  |  |  |
| See text                                                       | distance across a square is the same no                                                                |  |  |  |  |  |
|                                                                | matter how the square is crossed. They                                                                 |  |  |  |  |  |
|                                                                | often think that a diagonal is the same length                                                         |  |  |  |  |  |
|                                                                | as a side of a square. The square below                                                                |  |  |  |  |  |
|                                                                | shows 3 bolded "lines" all of different                                                                |  |  |  |  |  |
|                                                                | lengths.                                                                                               |  |  |  |  |  |
|                                                                |                                                                                                        |  |  |  |  |  |
|                                                                |                                                                                                        |  |  |  |  |  |
|                                                                |                                                                                                        |  |  |  |  |  |
|                                                                |                                                                                                        |  |  |  |  |  |
|                                                                |                                                                                                        |  |  |  |  |  |
|                                                                |                                                                                                        |  |  |  |  |  |
|                                                                |                                                                                                        |  |  |  |  |  |
|                                                                |                                                                                                        |  |  |  |  |  |
|                                                                |                                                                                                        |  |  |  |  |  |
|                                                                |                                                                                                        |  |  |  |  |  |
|                                                                |                                                                                                        |  |  |  |  |  |
|                                                                | So the manulating shares has a maxim star mode                                                         |  |  |  |  |  |
|                                                                | So the resulting shape has a perimeter made of $6 + 6 + 2$ curves of unknown length.                   |  |  |  |  |  |
|                                                                | These curves are each definitely longer than                                                           |  |  |  |  |  |
|                                                                | 4 units. So the perimeter has increased.                                                               |  |  |  |  |  |
|                                                                | i units. So the permeter has mereased.                                                                 |  |  |  |  |  |
| 11.                                                            | 11.                                                                                                    |  |  |  |  |  |
| a. Sketch rectangles with perimeter 20 meters.                 | a. If the perimeter is 20 meters then                                                                  |  |  |  |  |  |
| Record the length, width, area and perimeter in                | 2(1 + w) = 20 so $1 + w = 10$ . Some pairs are:                                                        |  |  |  |  |  |
| a table.                                                       | (1, 9), (2, 8), (3, 7), (4, 6), (5, 5), (6, 4) etc.                                                    |  |  |  |  |  |
| b. Sketch a graph of the length and area.                      | Length Width Perimete Area                                                                             |  |  |  |  |  |
| c. Describe how to use the table and graph to                  | r                                                                                                      |  |  |  |  |  |
| find the rectangular shape that has the greatest               | 1 9 20 9                                                                                               |  |  |  |  |  |
| area. The smallest area.                                       | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                 |  |  |  |  |  |
|                                                                | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                 |  |  |  |  |  |
|                                                                | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                 |  |  |  |  |  |
|                                                                | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                 |  |  |  |  |  |
|                                                                |                                                                                                        |  |  |  |  |  |
|                                                                | etc                                                                                                    |  |  |  |  |  |
|                                                                |                                                                                                        |  |  |  |  |  |
| 1                                                              | 1                                                                                                      |  |  |  |  |  |





|                                                                                               | Area of the example drawn = $3 \times 2.5 = 7.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Inv 3         6. Calculate the area and perimeter of the triangle and explain your reasoning. | square units.<br>6. Students have several ways to think<br>about the area of the triangle. They might<br>count whole square units covered and then<br>estimate the area covered by the partial<br>squares. Or they might surround this with a<br>4 by 8 rectangle and observe that the<br>triangle is half of the rectangle.<br>Or they might use the rule that Area of<br>triangle = $(\frac{1}{2})$ (base)(height) and use the<br>base and height shown on the picture below.<br>B<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A |  |  |  |
|                                                                                               | Area = 0.5(4)(8) = 16 square units.<br>Perimeter = 4 + length of AB + length of<br>AC.<br>The problem we have with the lengths of aB<br>and AC is that they do not lie on grid lines,<br>and so have to be measured or estimated                                                                                                                                                                                                                                                                                                                      |  |  |  |

|                                                                                                                                                                                                                                           | using the edge of a grid square as a unit.<br>Each is approximately 8.25 units long. (In a later unit students learn how to use the Pythagorean Theorem to find an accurate answer for these lengths.)<br>Perimeter = $4 + 8.25 + 8.25 = 20.5$ units.                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8.<br>Vashan said that if you used 7 feet as the base<br>of the triangle shown below then you would<br>calculate the same area as you did when you<br>used the10 feet base. Do you agree with him?                                        | 8. Vashan is correct. It does not matter<br>which side of a triangle we choose as the<br>base, as long as we then choose as the height<br>the distance from the base to the opposite<br>vertex. The triangle is half of the same 7 by<br>10 rectangle no matter the orientation.                                                                                               |
|                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                |
| 11. Melissa was finding the area of a triangle<br>when she wrote:<br>Area = $(\frac{1}{2}) \times 3 \times (4\frac{1}{2})$<br>a. Make a sketch of a triangle she might have<br>been working with.<br>b. What is the area of the triangle? | 11.<br>Apparently Melissa is using a base of 3 and<br>a height of 4.5 for her triangle. But there are<br>many triangles she might be working with.<br>The key is to make the height be the<br>perpendicular distance from the base to the<br>opposite vertex. Shown below are several<br>different triangles with the same base and<br>height (and, therefore, the same area.) |

|                  |            |                 |           |                                          |             | 3          |                 |                    | 4.                    |
|------------------|------------|-----------------|-----------|------------------------------------------|-------------|------------|-----------------|--------------------|-----------------------|
| Inv 5            |            |                 |           |                                          | 1.5         |            |                 |                    |                       |
| 15.<br>Best Crus | t Pizzario | celle thr       | e differe | nt sizes of                              | 15.<br>a.   |            |                 |                    |                       |
| pizza. Tł        |            |                 |           |                                          | a.<br>Pizza | Diame      | Radius          | Circu              | Area                  |
| the mediu        |            |                 |           |                                          | Size        | ter        | ituaius         | m                  | 1 Hou                 |
| the large        |            |                 |           | ,                                        | Small       | 8          | 4               | 3.14(8)            | $3.14(4^2)$           |
| a. Make a        |            |                 |           |                                          |             | 10         |                 | = 25.12            | = 50.24               |
|                  |            | a explain       | how you   | found the                                | Mediu       | 10         | 5               | 3.14(10)<br>= 31.4 | $3.14(5^2)$<br>= 78.5 |
| area of th       |            | <b>D</b> 1'     |           | T ]                                      | m<br>Largo  | 12         | 6               | 3.14(12)           | $3.14(6^2)$           |
| Pizza            | Diame      | Radius          | Circu     | Area                                     | Large       | 12         | 0               | =37.68             | =                     |
| Size             | ter        |                 | m         |                                          |             |            |                 |                    | 113.04                |
| Small<br>Mediu   |            |                 |           |                                          |             |            | ations use .    | 3.14 as an         | l                     |
| m                |            |                 |           |                                          | approxim    | ation to   | r p1.           |                    |                       |
| Large            |            |                 |           |                                          | h Using     | the answ   | vers for are    | a from th          | e ahove               |
|                  | I          | I               |           | <u>ı</u>                                 | •           |            | compariso       |                    |                       |
|                  | aims that  |                 |           | za is                                    | Pizza Si    |            | Area            | 0.75(d             |                       |
| about 0.7        | 5(diamete  | $er)^2$ . is he | correct?  |                                          |             |            |                 | $er)^2$            |                       |
|                  |            |                 |           |                                          | Small       | 5          | 0.24            | 0.75(8             | $^{2}) =$             |
|                  |            |                 |           |                                          |             |            |                 | 48                 |                       |
|                  |            |                 |           |                                          | Medium      |            | 8.5             | 0.75(1<br>75       |                       |
|                  |            |                 | Large     |                                          |             | 0.75(1 108 | $75(12^2) =$ 08 |                    |                       |
|                  |            |                 |           | As you can see the estimates using Sam's |             |            |                 |                    |                       |
|                  |            |                 |           |                                          | formula a   | re a littl | e low. Thi      | is makes s         | sense                 |
|                  |            |                 |           |                                          |             |            |                 | diameter           |                       |

diameter 2 π  $\pi \frac{\text{diameter}}{2} \qquad \frac{\pi}{4} (\text{diameter})^2$ 

|                                                                                                                                                                                                 | since the formula used in the first table for<br>area = $\pi$ (radius) <sup>2</sup> . Radius = $\frac{\text{diameter}}{2}$ so we<br>could replace this in the formula and have<br>Area = $\pi (\frac{\text{diameter}}{2})^2 = \frac{\pi}{4} (\text{diameter})^2$ . Now<br>$\frac{\pi}{4}$ is more than $\frac{3}{4}$ and so Sam's formula will<br>always give a lower estimate.                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>26.</b><br>A rectangular lawn has a perimeter of 36 meters and a circular exercise run has a circumference of 36 meters. Which shape do you think will give Rico's dog the most area to run? | 26. This question refers back to the idea in<br>earlier investigations that two shapes with<br>the same perimeter do not necessarily have<br>the same area.<br>Students discovered that, if only rectangles<br>are compared, that the more "square" a<br>rectangle (that is the closer the ratio of sides<br>is to 1:1) the more area it can enclose for a<br>given perimeter. So in this case the "best"<br>rectangle they can make is $9 \times 9$ . $(9 + 9 + 9 + 9 + 9 = 36)$<br>Now we have to do some reasoning with the<br>formula for the circumference.<br>C = pi(diameter)<br>36 = pi(diameter)<br>So, diameter = $\frac{36}{\pi} = 11.5$ (approx). So the<br>radius must be 5.75. Now that we know the<br>radius we can figure the area = $\pi (5.75)^2 =$<br>103.8 (approx).<br>So a circle with circumference 36 meters |
|                                                                                                                                                                                                 | covers more area than a square with perimeter 36 meters.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |