Covering and Surrounding: Homework Examples from ACE Investigation 1: Questions 5, 8, 21
 Investigation 2: Questions 6, 7, 11, 27
 Investigation 3: Questions 6, 8, 11
 Investigation 5: Questions 15, 26

ACE Question	Possible Answer
Inv 1	
5. Draw 2 different shapes, each with an area of 15 square units and perimeter of 16 units.	5. This question reinforces the idea that the relationship between perimeter and area is not simple. The obvious answer is a rectangle with length 5 and width 3. $\begin{aligned} \mathrm{P} & =5+3+5+3 \\ & =16 . \\ \mathrm{A} & =5 \times 3 \\ & =15 . \end{aligned}$ But if students use their experiment with square tiles they can come up with other, non-rectangular, arrangements of 15 square tiles.
	 $\begin{aligned} & \mathrm{P}=4+4+3+ \\ & 1+1+3=16 \\ & \text { Area }=15 \\ & \text { square units. } \end{aligned}$
8. Copy the design onto grid paper. Add 6 squares to make a new design with a perimeter of 30 units. Explain how the perimeter changed as you added new tiles to the figure.	8. We need to reduce the perimeter while increasing the area. Students learned that more "compact" figures can cover the same area without increasing the perimeter. This idea means that they have to "fill in" some of the blank space in the center of the shape.

lengths and perimeters for rectangles with a fixed area.
a. What is the perimeter of a rectangle whole length is 2 meters? What is its width?
b. Describe the rectangle that has the largest perimeter.
c. Describe the rectangle that has the smallest perimeter.
d. What is the fixed area? Explain how you found the answer.

7.

The following 4 by 6 rectangle is drawn on grid paper. Billie started at an edge and cut a path to the opposite corner. She then slid the
$\mathrm{A}=1 \mathrm{l}$ and
$\mathrm{P}=1+\mathrm{w}+1+\mathrm{w}=21+2 \mathrm{w}=2(1+\mathrm{w})$.
a. The point $(2,32)$ represents a rectangle with length 2 and perimeter 32 . So, $2+w+2+w=32$. So $w=14$. (Students may also use the fact that $1+\mathrm{w}=$ half perimeter, so $2+\mathrm{w}=16$. This makes the solution for w easier.)
b. The points $(1,58)$ and $(28,58)$ both have the largest perimeter given on this graph. If $1=1$ then $1+w+1+w=58$, so $w=28$. If $1=28$ then $28+w+28+w=58$, so $w=1$. In both cases the rectangle has dimensions 1 by 28 .
c. The points $(4,22)$ and $(7,22)$ both have the smallest perimeter on this graph. If $1=4$ then $4+w+4+w=22$. so $w=7$. If $1=7$ then $7+w+7+w=22$, so $w=4$. In both cases the rectangles have dimensions 4 by 7 .
d. In part a the rectangle had length 2 and width 14 so area was 28 square units. In part b the rectangle had length 1 and width 28 so area was 28 square units. In part c the area had length 4 and width 7 so area was 28 square units. This graph shows rectangles whose dimensions and perimeters vary but whose areas are all 28 square units.
7.

This question addresses the fundamental idea that "area" is about "covering space." Therefore, if we cut a shape into pieces and
piece onto the opposite edge, making the straight edges match.

Are the area and perimeter of her new figure the same as, less than, or greater than the area and perimeter of the original figure? Explain.

See text
rearrange the pieces we will still cover the same area, though the actual shape looks different.

Students often think that if the areas are the same the perimeters must be the same. The other misconception they have is that the distance across a square is the same no matter how the square is crossed. They often think that a diagonal is the same length as a side of a square. The square below shows 3 bolded "lines" all of different lengths.

So the resulting shape has a perimeter made of $6+6+2$ curves of unknown length. These curves are each definitely longer than 4 units. So the perimeter has increased.
11.
a. If the perimeter is 20 meters then $2(1+w)=20$ so $1+w=10$. Some pairs are: $(1,9),(2,8),(3,7),(4,6),(5,5),(6,4)$ etc.

Length	Width	Perimete r	Area
1	9	20	9
2	8	20	16
3	7	20	21
4	6	20	24
5	5	20	25
6	4	20	24
etc			

b. Draw another rectangle on grid paper that has the same perimeter as the one above but a different area than the one shown. What is the area of the one you have made? Be sure to label length and width.

The perimeter $=3.25+2.25+3.25+2.25=$ 11 units.
b. The equation for perimeter gives a strategy for a way to change the dimensions but retain the total 11 units.
$3.25+2.25+3.25+2.25$
$=3.5+2+3.5+2$ (adding 0.25 to the
length and subtracting 0.25 from the width)
$=3.75+1.75+3.75+1.75$
$=4+1.5+4+1.5$
$=4.25+1.25+4.25+1.25$
etc.
So some other rectangles with the same perimeter are: 3.5 by $2,3.75$ by 1.75 , 4 by $1.5,4.25$ by 1.25 etc. One of these is drawn below.

	Area of the example drawn $=3 \times 2.5=7.5$ square units.	
Inv 3 \|l	l	
6. Calculate the area and perimeter of the triangle and explain your reasoning.	6. Students have several ways to think about the area of the triangle. They might count whole square units covered and then estimate the area covered by the partial squares. Or they might surround this with a 4 by 8 rectangle and observe that the triangle is half of the rectangle. Or they might use the rule that Area of triangle $=\left(\frac{1}{2}\right)($ base $)($ height $)$ and use the base and height shown on the picture below. Area $=0.5(4)(8)=16$ square units. Perimeter $=4+$ length of $\mathrm{AB}+$ length of AC. The problem we have with the lengths of aB and AC is that they do not lie on grid lines, and so have to be measured or estimated	

$\left.\begin{array}{|l|l|}\hline\end{array} \begin{array}{l}\text { using the edge of a grid square as a unit. } \\ \text { Each is approximately } 8.25 \text { units long. (In a } \\ \text { later unit students learn how to use the } \\ \text { Pythagorean Theorem to find an accurate } \\ \text { answer for these lengths.) } \\ \text { Perimeter }=4+8.25+8.25=20.5 \text { units. }\end{array}\right\}$

Inv 5									
15. Best Cru	Pizzaria	sells thr	e differ	t sizes of	$15 .$ $\mathrm{a} \text {. }$				
pizza. T the medi	e small m size h	ze has a a radius	adius of of 5 in	inches, es, and	Pizza Size	Diame ter	Radius	$\begin{array}{\|l} \hline \text { Circu } \\ \mathrm{m} \\ \hline \end{array}$	Area
the large a. Make	ize has table wi	radius of the foll	6 inche wing h	dings.	Small	8	4	$\begin{aligned} & \hline 3.14(8) \\ & =25.12 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.14\left(4^{2}\right) \\ & =50.24 \end{aligned}$
Fill in th area of the	table and pizzas.	explain	ow you	found the	Mediu m	10	5	$\begin{aligned} & \begin{array}{l} 3.14(10) \\ =31.4 \end{array} \end{aligned}$	$\begin{aligned} & 3.14\left(5^{2}\right) \\ & =78.5 \end{aligned}$
Pizza Size	Diame ter	Radius	Circu m	Area	Large	12	6	3.14(12) $=37.68$	$\begin{array}{\|l\|} \hline 3.14\left(6^{2}\right) \\ = \\ 113.04 \end{array}$
Small					The abo	calcu	ns use	14 as	
Mediu m					approxi	ation for			
Large					b. Using	ans	for	from	above
					table and	making	omparis		
b. Sam c about 0.7	aims that (diamet	he area $)^{2}$. is he	f the piz correct		Pizza Siz		ea	$\begin{aligned} & 0.75(\\ & \text { er) }{ }^{2} \\ & \hline \end{aligned}$	amet
					Small	50		$\begin{aligned} & 0.75(\\ & 48 \end{aligned}$	
					Medium	78	5	$\begin{aligned} & 0.75(\\ & 75 \end{aligned}$	$\left.0^{2}\right)=$
					Large	I	3.04	$\begin{aligned} & \hline 0.75(\\ & 108 \\ & \hline \end{aligned}$	$\left.\overline{2^{2}}\right)=$
					As you ca formula	n see t a littl	estimate low. Thi	using S s makes	$\begin{aligned} & \text { m's } \\ & \text { ense } \end{aligned}$

$\left.\begin{array}{|l|l|}\hline & \begin{array}{l}\text { since the formula used in the first table for } \\ \text { area }=\pi(\text { radius })^{2} . \text { Radius }=\frac{\text { diameter }}{2} \text { so we } \\ \text { could replace this in the formula and have } \\ \text { Area }=\pi\left(\frac{d i a m e t e r ~}{2}\right)^{2}=\frac{\pi}{4}(\text { diameter })^{2} . \text { Now }\end{array} \\ & \begin{array}{l}\frac{\pi}{4} \text { is more than } \frac{3}{4} \text { and so Sam's formula will } \\ \text { always give a lower estimate. }\end{array} \\ \hline \begin{array}{l}\text { 26. } \\ \text { A rectangular lawn has a perimeter of } 36 \\ \text { meters and a circular exercise run has a } \\ \text { circumference of } 36 \text { meters. Which shape do } \\ \text { you think will give Rico's dog the most area to } \\ \text { run? }\end{array} & \begin{array}{l}\text { 26. This question refers back to the idea in } \\ \text { earlier investigations that two shapes with } \\ \text { the same perimeter do not necessarily have } \\ \text { the same area. }\end{array} \\ \begin{array}{ll}\text { Students discovered that, if only rectangles } \\ \text { are compared, that the more "square" a }\end{array} \\ \text { rectangle (that is the closer the ratio of sides } \\ \text { is to } 1: 1) \text { the more area it can enclose for a } \\ \text { given perimeter. So in this case the "best"" }\end{array}\right\}$

