Selected ACE: Data Distributions

Investigation 1: \#13, 17
Investigation 2: \#3, 7
Investigation 3: \#8
Investigation 4: \#2

ACE Problem					
Investigation 1					
13.					
a. The table below shows the data for the brow					
candies from Bags 4-9 of Exercise 1. .					
ordered value bar graph and a line plot for					
data.					
Brown M\&M's					
Bag \# 4 5 6 7 8 Number of Brown Candies 14 14 15 12 16					

b. What are the minimum and maximum values?
c. What is the range?
d. Are there gaps or clusters of data? Explain.
e. Would an ordered value bar graph or a line plot better represent the data? Explain.
13.
a. Note: A value bar graph shows the number of M\&M's in each bag. An ordered value bar graph shows the same thing, but the values are arranged in increasing order. These values are not the bag numbers, which are in essence just names. The bags could just as well have been named "A", "B", "C", etc. The values which have to be ordered are the numbers of brown candies.
These values range from 12 to 24 .

b. Not answered here.
c. Not answered here.
d. Not answered here.

	e. A line plot shows how frequently each value (\# M\&M's) occurs. This is helpful in looking for clusters of data, or unusual values. Thus a line plot could be helpful here in locating which values occur most frequently,
where most values are clustered,	
which values are typical/unusual,	
and where significant gaps occur.	
However, with only 6 pieces of data	
either graph would give the same	
information.	

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \& \& \& \& \& \& \& \& \& \& \begin{tabular}{l}
immigration; Mexican immigration did not increase quite as much as Asian immigration in the decades 1970 to 1990; Mexican immigration is a smaller part of total immigration for the most recent figures (in 2000); Asian immigration may have peaked in 1981-1990. \\
ote: We could deduce that there were more Asian immigrants than Mexican immigrants in 1991 to 2000, in terms of raw numbers as well as percents, because both are percents of the same total immigration for that decade. Not answered here.
\end{tabular} \\
\hline \multicolumn{10}{|l|}{Investigation 2} \& \& \\
\hline \multicolumn{9}{|l|}{\begin{tabular}{l}
3. \\
a. What is the mean amount of caffeine in the soda drinks?
\end{tabular}} \& \& \multicolumn{2}{|l|}{\multirow[t]{7}{*}{\begin{tabular}{l}
3. \\
Note: there are several ways to think about finding the mean. Three of these are shown below. These are \\
Balancing \\
Sharing \\
Using an Algorithm \\
a. We could think of balancing the distribution of caffeine values. A line plot is a convenient way to show the distribution. The idea of balancing is similar to thinking of a teeter-totter. Students can make a quick estimate of the balance point and then use the exact values shown in the line plot to check. (This is a useful method for making an estimate when the exact values are not all known. See Samples and Populations.)
\end{tabular}}} \\
\hline Na
me \& \begin{tabular}{|c}
A \\
\\
38
\end{tabular} \& \begin{tabular}{|c}
B \\
\\
37
\end{tabular} \& C \& D

27 \& E
26 \& F

24 \& G \& \& 3

23 \& \&

\hline	Caff
ein	
e in	
8	
8	
0z.	\& 38 \& 37 \& 27 \& 27 \& 26 \& 24 \& 21 \& 15 \& 23 \& \&

\hline | b. Mak |
| :--- |
| c. Wh drin | \& ke a at is inks? \& \& ean \& the \& \& \& \& the ot \& \& \&

\hline $$
\begin{aligned}
& \mathrm{Nam} \\
& \mathrm{e}
\end{aligned}
$$ \& A \& B \& C \& D \& \[

$$
\begin{aligned}
& \hline \mathrm{Te} \\
& \mathrm{a} \\
& \mathrm{~A} \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{array}{|l|l}
\hline \mathrm{Te} \\
\mathrm{a} \\
\mathrm{~B} \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& \text { Cof } \\
& \text { fee }
\end{aligned}
$$

\] \& \[

$$
\begin{array}{|l|}
\hline \text { Coco } \\
\mathrm{a}
\end{array}
$$
\] \& Juice \& \&

\hline $$
\begin{aligned}
& \text { Caffe } \\
& \text { ine in } \\
& 8 \mathrm{oz} \text {. }
\end{aligned}
$$ \& 77 \& 70 \& 25 \& 21 \& 19 \& 10 \& 83 \& 2 \& 33 \& \&

\hline \multicolumn{10}{|l|}{| d. Make a line plot for the other drinks. |
| :--- |
| e. Write three statements comparing the amount of caffeine in soda and other drinks. |} \& \&

\hline
\end{tabular}

	From the above graph we can see that the estimated mean of 26 is too low, because we have a total difference of +25 above the estimated mean, and a total difference of only -21 below the estimated mean. OR, We could think of sharing the amounts of caffeine, taking from higher amounts to add to lesser amounts. A bar graph would make the idea of sharing clear. The bar graph below has a horizontal line drawn across at 28. The bars are marked to show how values exceed or fall short of 28 mg of caffeine. We can see that the horizontal line has been set too high because we only have +19 mg excess caffeine from the first two bars to "share" with other values below 28 mg of caffeine. By trial and error we can find a horizontal line that makes the "sharing" process come out evenly.

$\left.\begin{array}{|l|l|l|}\hline & \begin{array}{l}\text { to use the median as a measure } \\ \text { of center, instead of mean. } \\ \text { Notice that mean and median are } \\ \text { alike for the soda drinks, but } \\ \text { quite different for the "other" } \\ \text { drinks. }\end{array} \\ \text { They might say that the "other" } \\ \text { drinks show much more } \\ \text { variability, and they might } \\ \text { measure this variability by using } \\ \text { the range, which is 81 for "other" } \\ \text { and 23 for "soda." This large }\end{array}\right\}$

	Japanese and U.S. names are as long as this. (More on this idea of benchmarks in the next Investigation.) b. i. If we move the 6 pieces of data from 13 letters to 16 letters then the distribution changes its overall shape, from having a generally mound-shaped distribution to having a shape with two distinct mounds. ii. Notice that the 6 pieces of data that have been moved were already above the median. Moving them three units right does not change where the "middle" or median of the distribution is. What is important for calculating the median is the order of the data, and the position of the middle piece of data in this order, not how far above (or below) the middle any particular group of data values are. iii. Not answered here.
Investigation 3	
8. Use the line plots and table below. How much slower are the Trial 1 reaction times for nondominant hands than the Trial 1 reaction times for dominant hands? Explain. (See student text for graphs and table.)	8. Students have several ways to make a comparison. They might compare measures of center. From the graph we can see that the mean reaction time for the dominant hand is about 1.05 seconds, while the mean for the nondominant hand is 1.3 seconds. Typically the dominant hand is 0.25

	seconds faster. If we compare the medians the dominant hand is 0.2 seconds faster. (We can make more exact comparisons from the table.) The mean is higher than the median for the non-dominant hand because of the influence of 3 unusually slow times (slower than 2 seconds.) OR, we might compare the maximum (slowest) values for each distribution. This would be a poor way to compare. The maximum values are about the same for both distributions, but we can see that the non-dominant times distribution is clearly shifted right of the dominant hand times. OR, They might compare clusters, as a way of addressing typical times. The dominant times are clearly clustered around 1 second, while the non-dominant times seem to have two clusters, around 0.8 seconds and around 1.2 seconds. This is not a very conclusive comparison because the non-dominant times are more variable, and not so clearly clustered around a single value. Or, We might choose a benchmark such as 1.4 seconds. We can say that only 4 times (out of 40) are equal to or slower than 1.4 seconds for the dominant hand, while 15 times (out of 40) are equal to or slower than 1.4 seconds.
Investigation 4	
2. a. The three pairs of line plots below display data about 50 wood roller coasters. Means and medians are marked on each graph.	2. a. As in \#8 investigation 3 we have several ways to make comparisons. Below are comparisons of Maximum

(See student text for graphs.)

a. Write three statements comparing wood rller coasters built before 1960 with wood roller coasters built in 1960 or later.
b. Hector says that there are too few roller coasters to make comparisons. Do you agree with hector? Explain.

Drop for the two time periods. The methods used to make the comparisons are Comparing centers Comparing variability Comparing to the same benchmark
(These same methods can be used to make comparisons of Maximum Heights and Top Speeds.)

Comparing Centers:

Both mean and median are greater for the later wood coasters. We can deduce that the typical wood coaster from the later era (1960-2004) has a greater maximum drop.

Comparing variability:

The range for the later coasters is $215-35=180$ feet. The range for the earlier coasters is $95-10=85$ feet. From this we could deduce that the later coasters are more variable, BUT this range value is very much influenced by the very unusual value of 215 feet for the later coasters. If we exclude that value the range for the later coasters would be 155-35 or 120 feet, which is still a larger range value than for the earlier coasters.
OR, we could compare clusters. We can see that most of the later wood coasters cluster between 70 and 100 feet, while there is no evident cluster for the earlier coasters.
Both of these ways of thinking about how spread out the data are for the two eras would lead us to conclude that the later era shows more variability. BUT there is so little data in the 1902-1959 set that it would be impossible for clusters to form. This makes judging variability very

	problematic. Comparing to a benchmark: We could say that half the later coasters had maximum drops greater than or equal to 88 feet, while only 1 (out of 10) of the earlier coasters had a drop as great as this. Not answered here.

