Vocabulary: Data Distributions


Below are three bar graphs that use the same data about "Immigration from Mexico to U.S." Examples 2 and 3 are actually graphs over time, intended to show trends. Example 2: The graph shows numbers of Mexican immigrants in each decade, and we can see that the numbers are increasing quite dramatically.


Example 3: The graph shows the same data, but this time as a nercentage of totalimmiaration. The aranhs are not

Therefore we can use the mode to summarize the data. Or the bar graph may show information about some value of the variable, such as population in U.S., population in Germany etc., in which case we can say which country has the largest population, or note the gap between largest and smallest countries.
II. Numerical data: is data about some attribute that must be organized by numerical order to show how the data varies. For example:

- Number of pets
- Measure of a piece of lumber

A bar graph that shows numerical data has the values of the data in a fixed order on the horizontal axis.

## Summarizing Numerical Data:

The maximum, minimum and center values of the attribute now make sense. For numerical data, the dot plot or bar graph always shows how frequently particular numerical values of the variable of interest occur, for example, how many times a value of "3 pets" was recorded, or how many times a value of 8.1 feet was recorded. We can now compute with the values of the variable, say "number of pets," and say what the mean or median number of pets might be, as well as the mode. (See Data About Us for a Dot Plot, also called a Line Plot.)
as a percentage of total immigration. The graphs are not exactly the same shape because immigration from other countries is another variable making up the total immigration picture. Thus, the bar for the decade 1821-30 shows about $4 \%$ of all immigration was from Mexico. This bar is almost invisible on the first graph because the total immigration numbers were much smaller, so 4\% of a smaller number gives a result too small to show up on the scale used. From the second graph we can say that there is an increasing trend in immigration from Mexico, both in actual numbers, and as a percentage of the total.
However, the greatest percentage that comprises Mexican immigrants is less than $25 \%$ of all immigration.


Example 4: The graph is a truly numerical data graph. The data is continuous; we might have ANY value between 0 and 100 for the immigration percentage. The Mexican immigration percentages have been organized along the horizontal axis to show how this variable, immigration percent, has varied, but not over time in this graph. Each piece of data is a numerical value, the immigration percent for a decade. (There are 19 decades represented in all. The actual percentages are: $0,0,0,0$, $0,0,0,1,1,3,4,4,6,11,12,14,14,23,25$. ) There is no scale on the vertical axis, but there should be. Without a scale we can not say exactly how often a particular percentage of immigration from Mexico occurred. What we can see from the shape of the graph is which percentages occurred more often and which less often.

## Discrete or Continuous?

Discrete Data: is countable, like number of pets in a household. Continuous Data: is data that does not have listable values, like the measurement of a piece of lumber. The distinction is that in the first case, where the attribute is "number of pets" we can have 1,2 or 3 pets, but there is no value of the variable "number of pets" between these whole numbers. Meanwhile, if the attribute is the "measurement of a piece of lumber" we can record any measurements between whole numbers.

Note: data that must be collected as whole numbers can still have decimal numbers as the mean or median.

## III. Graphs over time: are

 categorical, though they have some of the characteristics of numerical data. For example, the attribute or variable might be "year" and the categories might then be 1900, 1920, 1940 etc., which are indeed numbers. Unlike true categorical data the order does matter, since it tells part of the story. However, it is still not sensible to talk about the mean or maximum value of the variable "year." For example, if we record immigration between 1820 and 2000 then we would not say that " 2000 " is the maximum value since the distribution arbitrarily ends at 2000. If we collected more information in 2001 then the distribution would be extended, but we would not say thatPercent immigration from Mexico per decade, for past 19 decades


0-4.9 5 - 9.9 10-14.9 15-19.9 20-24.9 $25-29.9$
Immigration from Mexico (as a percent of the total immigration)

From this graph we can see maximum (25-29.9\%) and minimum ( $0-4.9 \%$ ) by looking at the horizontal axis. We can use the mode ( $0-4.9 \%$ ) or the median (also in the $0-4.9 \%$ bar) to talk about what is a typical immigration percentage. (See Measures of Center, below.) The 25\% immigration figure in one decade, 1990-2000 looks like an outlier when viewed in the context of all other immigration from Mexico. This is the same story as examples 2 and 3 , but from a different perspective.

## Example 5:

Here is some data collected about student opinions on the statement, "Data and Statistics is an interesting part of mathematics." This is categorical data.
Absolutely Disagree.... 4
Disagree .2
Neutral...................... 3
Agree........................ 12
Absolutely agree. .9
The bar graph below shows this data.


$\left.$| Absolutely <br> Disagree | Disagree | Neutral | Agree |
| :--- | :--- | :--- | :--- | | Absolutely |
| :--- |
| Agree | \right\rvert\, | A |
| :--- |

When you compare this bar graph to the example 4 you

| the data has become more variable |
| :--- | :--- |
| solely because of this additional data. |
| Graphs over time are good for |
| indicating trends, rather than |
| investigating variability or what is |
| typical. | | can see how the maximum and minimum values are not |
| :--- |
| read from the horizontal axis. You can use the mode to |
| say what a typical answer is. You can not calculate a |
| mean opinion. |


| having lots of data to examine, and we summarize the distributions of numerical data by finding measures of central tendency (i.e., mean, median, mode) or spread or variability (e.g., outliers, range) or shape (e.g., clumps, gaps). Most of these summarizing descriptions are easier to see on a graph that in a table, though the details are lost in moving from a table to a graph. | However, the range or variability of the data is most influenced by the two percentages, $23 \%$ and $25 \%$, which occurred only in the most recent decades. These two pieces of data are so unlike the rest of the data that we might call them outliers. (Technical definition of an outlier is given in Samples and Populations.) The most typical percentage immigration from Mexico is in the $0-4.9 \%$ interval, which is the largest cluster of data. If we use the graph alone we can say that this interval occurs most often, so is the mode. We can also say that the median ( $10^{\text {th }}$ decade from top or bottom of the ordered list of percentages by decade) will be in this interval also. (The mean is hard to estimate from the graph, because calculating a mean involves adding in ALL the percentages and dividing, or looking for a balance point. The unusually high percentages of 23 and $25 \%$ will have an influence on this calculation, so the mean may be in an interval higher than $0-4.9 \%$.) <br> See Example 7 below (Life Expectancy data). This can be summarized by noting that the range is small, only 8 years between the minimum and maximum values, that Andorra's life expectancy of 83 years is an outlier which skews the graph to the right. Most of the data clusters between 76 and 79 years. The most typical life expectancy is $78-78.9$, using the mode, or $77-77.9$, using the median. The mean would not be such a good representative of what is typical since it is affected by the unusual value of 83 . |
| :---: | :---: |
| Variability: This property of numerical data distributions can be seen visually on a graph. There are several ways to see, describe or measure variability, but in every case what we are looking for is how the recorded values of the attribute vary. For example, measurements of an object vary, not because of mistakes or inaccuracies in the process but because measurement results are inherently variable. A saw might cut a piece of lumber intended to be 8 feet long, but someone measuring it will say it is in fact 8 feet and _inch, or 8 feet and $\frac{5}{16}$ of an inch etc. Another example is how samples | Example 6. Below is a value bar graph of categorical data. The categories are countries The values are life expectancies. Measures of variability make no sense for this kind of graph. Notice that the scale on the y-axis MIGHT be misleading. It makes it look like Andorrans live twice as long as Belgians, when in fact the difference is 5 years. <br> Example 7. Below is the same data as in example 6, |

vary: one sample might indicate that $48 \%$ will vote for candidate A, while a second sample from the same population might indicate that $51 \%$ will vote for candidate A. Variability is an inherent property of certain kinds of numerical data, not a sign of inexactness in the process of data collection.

Measures or descriptors of variability: In this unit students look at

- the range to determine if the gap from minimum to maximum is wide,
- where data cluster to determine if most data lie within a narrow range of values
- gaps in a distribution to determine if some values occur much less frequently than others
- outliers to determine if these are true representatives of wide variation in the data or perhaps errors
Note: the only measure of variability in the above list is range. In future units students learn to measure variability by using the interquartile range.

|  |
| :--- |
| The shape of a distribution <br> tells us |

- whether the data is widely spread with only a relatively few pieces of data at
organized as a frequency bar graph of numerical data. The variable or attribute is life expectancy to nearest year, and the vertical axis indicates how frequently this life expectancy was observed.


Life expectancy to nearest year
Now it makes sense to say that the range for this variable, life expectancy, is quite small, only 8 years or $83-75$ years, and even smaller if the outlier, 83 years (Andorra) is not included in the calculation. There is a gap in the graph from $80-82$ years, making Andorra's 83 years look even more unusual. Most of the data clusters between 76 and 79 years.

## Example 8:

Below is a numerical data frequency graph, in which the variable is \# calories in a 6 ounce soft drink.

| many different values of the variable of interest, or clustered together at a few values of the variable. <br> - Whether there are gaps or outliers <br> - Whether the distribution is symmetric or not <br> - Where the center or most typical value of the variable is, and whether this is affected by the shape. | The shape of the distribution tells us that the \# calories varies widely, with no particular \# calories being really typical. There is a large gap in the distribution. For some reason there were no soft drinks with calories between 5 and 59.9. If we tried to use mode to summarize what is typical we would have to give 3 different answers. If we used median we would use 80. If we used mean we would estimate approximately 60 calories, using the idea that the mean is the balance point of the distribution. None of these measures of center gives a satisfactory way to summarize this distribution because of the shape. <br> In Examples 4 and 7 above the distributions were skewed right. |
| :---: | :---: |
| Three measures of central tendency (center): <br> - Mode is the data value or category occurring with the highest frequency. It sometimes has more than one value and is unstable because a change in one or a few data values can lead to a very large change in the mode value. A distribution may be unimodal, bimodal, or multimodal. As a measure of "typical" mode is applicable to both categorical and numerical data, but not to graphs over time. <br> - Median is the numerical value that marks the middle of a distribution. It is not influenced by extreme data values so is a good measure to use when working with distributions that are skewed. Graphically, the median marks the location that | In Example 1 above, the mode car color was grey. In some sense this is "most typical" but the other numbers were so close that it would be misleading to think that "grey" was "typical" but "red" was not. <br> In Example 5 above, "Agree" was the mode response. <br> In Example 4 above, $0-5 \%$ was the most frequently occurring, or mode, immigration figure for immigrants from Mexico. <br> In Examples 2 and 3, which were graphs over time, it makes no sense to talk of a particular decade occurring with more frequency than another. So mode is not applicable. <br> In Example 4 above there were 19 decades represented, each with a particular immigration value associated. If we place these 19 immigration numbers in order from least to greatest we actually have a list of percentages: $0,0,0,0,0,0,0,1,1,3,4,4,6,11,12,14,14,23,25$. The middle of this list is the $10^{\text {th }}$ piece of data from either end, or $3 \%$. So the median immigration figure is $3 \%$. We can say that over the past 200 years the typical immigration from Mexico is $3 \%$ of the total. (Notice that the |



Note: Students must learn to choose the measure of center that is appropriate to the situation and distribution. The goal is to choose the measure that gives the most useful information about what is "typical."
actual percentages are grouped on the graph for Example 4, so this list is not directly accessible from the graph. But even without the specific details we can see that over half the data is in the first bar on the graph, $0-4.9 \%$.)

In Examples 1 and 5 the data is categorical so we can not order these to find a middle or median piece of data. We can't give a median color or a median opinion. In the graphs over time in Examples 2 and 3 we can not use a middle year as a typical year for immigration.

Since mean is applicable only to numerical data we can apply it to Example 4 above. If we work from the list of percentages $(0,0,0,0,0,0,0,1,1,3,4,4,6,11,12,14$, $14,23,25$ ) we have three ways to think of the mean:

Strategy 1: we can think of "evening" these numbers out, trying to end up with a list of 19 identical values, yet the same overall value as the original list. There are different ways to effect this "evening" out. One way is to take the numbers in pairs. For example, the lowest and highest numbers are 0 and 25 . If we replace one or these with a 12 and the other with a 13 the overall total value is not affected. We have shared out the total value of these two data points. The list would become:
$12,0,0,0,0,0,0,1,1,3,4,4,6,11,12,14,14,23,13$. We can do the same with 0 and 23 , making them into 11 and 12.. The list would then be:
12, 11, $0,0,0,0,0,1,1,3,4,4,6,11,12,14,14,13,13$. Now we could "even out" a 0 and a 14, to make two 7 's.
$12,11,7,0,0,0,0,1,1,3,4,4,6,11,14,7,13,13$. If we continue like this we will eventually have a list with 6 's and 7's. The mean is between 6 and 7.

Strategy 2: Find the total value by adding all the values, and then "share out" this total value into 19 equal pieces by dividing. $(0+0+0+0+0+0+0+1+1+3+4+4+$ $6+11+12+14+14+23+25) \div 19=6.2$..
Therefore, the mean Mexican immigration over these 19 decades is $6.2 \%$ of the total immigration. Notice that this measure of center is influenced by the two unusually high values, and so is not as good a measure of "typical" as the median.

Strategy 3: Looking at the graphical representation of the

|  | data (See Ex 4) we can try to visualize where a balance <br> point would be. This distribution is skewed right, so the <br> high values pull the mean up. But there is a very large <br> cluster of values between 0 and 5. Trying to visualize a <br> fulcrum point that will allow this distribution to balance is <br> challenging. |
| :--- | :--- |

