Vocabulary: Filling and Wrapping

Concept	Example
A rectangular prism : is a three-dimensional shape with congruent rectangles for base and top, and four lateral (side) rectangular faces. (Technically, this defines a right rectangular prism. If the lateral faces were parallelograms then this would be an oblique prism. Students do not investigate oblique prisms in this unit.) Note: In a rectangular prism, front and back faces are congruent, top and bottom faces are congruent, right and left sides are congruent.	Above are some right rectangular prisms. The "right" refers to the angle between faces. The base of the box on the left is a 3 by 5 rectangle, so is the top. Two of the lateral faces of this box are 3 by 5 rectangles; the other two faces are 3 by 3 rectangles. Oblique rectangular prism
Surface area of a Rectangular Prism: This is the area needed to "wrap" the prism, that is, the sum of the areas of the 6 faces. A pattern is a flat design, that is, a 2dimensional shape that can be folded to make or wrap a rectangular prism. This provides a visual representation of surface area as a two-dimensional measure of a three-dimensional object. This also provides a strategy to find the surface area of a prism. Surface area $=$ area of (base + top + front + back + left side + right side) $=2 \text { (base) }+2 \text { (front) }+2 \text { (right side) }$	The above is a pattern for a 4 by 4 by 4 cube. A cube is a special case of a rectangular prism. The bases and the lateral faces are all squares, which are just special cases of rectangles. Find the surface area of the rectangular prism shown below.

Note: other patterns could have been drawn to show how the 6 faces might be laid out, but the surface area would not be affected. The prism could also be reoriented so that another face is on the bottom. It does not matter which face we call the base, since they are all rectangles.

General Prisms: The definition of a right rectangular prism generalizes to fit all other prisms. A prism is a three-dimensional shape with congruent polygons for base and top and rectangles for lateral faces. Thus, a pentagonal prism has a polygon for a base and top and 5 rectangular faces for the lateral faces. A hexagonal prism has a hexagon for a base and top and 6 rectangular lateral faces. If the base polygon is regular then the lateral faces will be congruent rectangles, but the base polygon does not have to be regular.	These are all prisms. Rectangular Triangular Pentagonal Notice that the lateral faces are congruent rectangles in the above prisms, because the each base is a regular polygon. Find the surface area of a triangular prism whose base is a right triangle with sides 3,4 and 5 units, and whose height is 6 units. We can take advantage of the known sides of the triangle to deduce the dimensions of the yellow rectangle, 5 by 6, and the blue rectangle, 3 by 6 . These are not congruent rectangles because the base is not regular. $\begin{aligned} & \text { Surface area }=2 \text { triangles }+3 \\ & \text { rectangles }=2(0.5 \times 4 \times 3)+4 \times 6+5 \times \\ & 6+3 \times 6=2(6)+24+30+18=84 \end{aligned}$ square units.

The volume of a rectangular box or prism: the number of unit cubes it takes to fill the box or prism. One strategy to determine this is to count the number of unit cubes in the layer that would cover the area of the base-one unit cube sits on each square unit in the base - - and to count the number of layers needed to equal the height of the prism. The volume (the total number of unit cubes) of a rectangular prism, therefore, is the area of its base x height. See example below:

The volume of any prism = base area x height.

The figures indicate how the layering strategy generalizes to any kind of prism.

Cylinder: is a particular kind of variation of a prism. The base and top are congruent circles, not polygons, and the lateral face is one continuous rectangle. Therefore, the strategies for finding the surface area and volume of a prism extend to finding the

Find the volume of a rectangular prism with dimensions 2 by 5 by 8.
We can consider any of the faces to be the base. Suppose we decide that the base is 2 by 5 units, then the height is 8 units. The base layer would contain 2 $x 5$ or 10 unit cubes, and there would be 8 layers. Thus, the volume is 8×10 cubic units.

Find the volume of a rectangular prism with dimensions 2.5 by 5 by 3.3.
Volume $=$ (area of base) \times height $=(2.5 \times 5) \times 3.3=$ $12.5 \times 3.3=41.25$ cubic units.

Find the volume of a right triangular prism whose base is a 3 by 4 by 5 right triangle, and whose height is 6 units.

Since the triangle is a right triangle we know its base and height, 4 units and 3 units. Thus, the base area $=0.5(4 \times 3)=6$ square units. The height of the prism is 6 units. Therefore, the volume of the prism = base area \times height $=6 \times 6=36$ cubic units.

Find the surface area and volume of the cylinder shown below.

surface area and volume of a cylinder. Surface area of cylinder = area of base and top + lateral area = 2(area of circular base) + area of lateral rectangle. Because the lateral rectangle wraps around the base circle we know that the length of this lateral rectangle $=$ circumference of base circle $=\pi$ (diameter). Thus, surface area $=2\left(\pi r^{2}\right)+\pi d$ The volume of a cylinder is the number of unit cubes in one layer (the area of the circular base) multiplied by the number of layers (the height) needed to fill the cylinder. Thus, Volume $=\left(\pi r^{2}\right)(h)$ cubic units.	The radius is 5 , so the diameter is 10 units. A pattern that would wrap this cylinder is shown below. Surface area $=2$ (circles) +1 rectangle $=2\left(\mathrm{mr}^{2}\right)+\pi(\mathrm{d})(\mathrm{h})=2(3.14)(25)+3.14(10)(8)=408.4$ square units. (approx). Note: If we use the approximation 3.14 for π then we have to indicate that the answer is accurate but not exact. Volume $=$ area of base layer x number of layers $=\left(\pi r^{2}\right)($ height $)=3.14(25)(8)=628$ cubic units.
Cone: a three dimensional shape with a circular base, which rises to a single vertex. Since the base and top are not congruent this is not a prism or a cylinder. By experimenting students compare the volumes of a cylinder and a cone, where they each have the same radius of base, and same height. They discover it takes 3 cones to fill the cylinder. Therefore,	Find the volume of a cone which has a base with diameter 10 units and height 8 units.

Thus, volume of cone $=\frac{1}{3}\left(\pi r^{2}\right)(h)$ cubic units.

Note: The surface area of a cone is not part of this curriculum.

Sphere: By experimenting students compare the volumes of a cylinder and a sphere, where they each have the same radius, and same height.

Volume of the sphere $=\frac{2}{3}$ of the volume of the cylinder with same radius and height.

Thus,

Volume of sphere $=\frac{2}{3}\left(\pi r^{2}\right)(\mathrm{h})$ cubic units.

Note: height of sphere = diameter of sphere or 2 r , so the formula can be rewritten as:

Volume of sphere $=\frac{2}{3}\left(\pi r^{2}\right)(2 r)$

$=\frac{4}{3}\left(\pi r^{3}\right)$ cubic units.

The cylinder is drawn for comparison. We know the volume of the cylinder $=\pi r^{2}(\mathrm{~h})=3.14(25)(8)=628$ cubic units (approx).

Therefore, the volume of the cone $=\left(\frac{1}{3}\right)(628)=209.3$ cubic units (approx).

Find the volume of a sphere with radius 5 units.

The cylinder is drawn for comparison. We know the volume of the cylinder $=$ area of base x height $=\left(\pi r^{2}\right)(h)=3.14(25)(10)=785$ cubic units (approx). Therefore, the volume of the sphere $=\left(\frac{2}{3}\right)(785)=$ 523.3 cubic units.

Note: Surface area of a sphere is not part of this curriculum.				

dimensions of a rectangular prism: If every dimension of a rectangular prism is changed by the same scale factor, k, (See Comparing and Scaling) then the new prism created is similar to the original prism and the volume will changed by a factor of k^{3}.	5 box changed if we a. Double only the length or b. Double each of the dimensions? a. The volume of the original 2 by 3 by 5 box is 30 cubic units. The surface area is $2(2 \times 3)+2(2 \times 5)+$ $2(3 \times 5)=62$ square units. If we double only the length then the box has dimensions 4 by 3 by 5 ; the volume of this is 60 cubic units and the surface area $=2(4 \times 3)+2(4 \times 5)+2(3 \times 5)=94$ square units. That is, the volume has been doubled but the surface area has not. b. If we double all the dimensions then the box is now 4 by 6 by 10 ; the volume of this is 240 cubic units and the surface area $=2(4 \times 6)+2(4 \times 10)+$ $2(6 \times 10)=248$ square units. That is, the volume has been increased by a factor of 8 (which is 2^{3}) and the surface area has been increased by a factor of 4 (which is 2^{2}).

