Selected ACE: Frogs and Fleas and Painted Cubes
 Investigation 1: \#8, 13
 Investigation 2: \#17, 24, 26, 30, 40
 Investigation 3: \#3, 11, 19
 Investigation 4: \#5, 18, 25

ACE Problem	Possible solution					
Investigation 1						
The equation for the areas of rectangles with a certain fixed perimeter is $A=I(20-I)$ where l is the length in meters. a. Describe the graph of this equation. b. What is the maximum area for a rectangle with this perimeter? What dimensions correspond to this area? Explain. c. A rectangle with this perimeter has a length of 15 meters. What is its area? d. Describe 2 ways you can find the perimeter. What is the perimeter?	In Investigation 1 students connected the equation for the Areas of rectangles with fixed perimeters of 20 (or 80 or 24) to the graph of the equation and to the table. They should recognize the format of the equation in this ACE question, and may be able to predict the shape of the graph and the fixed perimeter from the symbols. If they are not able to do this yet they can still make a table from the equation, and proceed from there to a graph. a. The table would be:					
	Length 0 1 2 3 4					
	Area	0	$1(19)$ $=19$	$2(18)$ $=36$	3(17) $=51$	$4(16)$ $=64$
	Length	5	6	7	8	9
	Area	5(15) $=75$	$6(14)$ $=84$	7(13) $=91$	$8(12)$ $=96$	9(11) $=99$
	Length	10	11	12	13	etc
	Area	$10(10)$ $=100$	$11(9)$ $=99$	$12(8)$ $=96$	$13(7)$ $=91$	etc
	b. The maximum area occurs when length and width are both 10 meters. This area is 100 square meters. (See table.) c. Students can either substitute $\mathrm{I}=15$ into the equation or use the table. $A=15(20-15)=75$ square meters. Notice that this rectangle has the same area as a rectangle with length 5 meters.					

Investigation 2	
17. Write 2 expressions, one in factored form and one in expanded form, for the area of the rectangle outlined in red.	17. The area of the red rectangle is made of several parts. Each of these smaller areas is known, and for each of the smaller areas we have a clue about one of the dimensions. For the rectangle in the lower left corner labeled " $5 x$ " we know that one side has length x. Thus, the other side must have length 5. The sketch below indicates this additional piece of information. The rectangle in the lower right corner has area 25. We know from the above sketch that one side has length 5 . Thus, the other side must also have length 5. This completes all needed information, as shown below. Now we can see that the area of the red rectangle can be written as $A=x^{2}+5 x+5 x+25$, which is the expanded form. But it can also be written as $A=L \times W=(x+5)(x+5)$, which is the factored form.

24. Use the Distributive Property to write the expression in expanded form. $(x+3)(x+5)$	24. Students can find the expanded form of this expression by making a sketch of a rectangle with length $x+3$ and width $x+5$. However, they should also be able to use the Distributive Property directly without the aid of a diagram, as follows: $\begin{aligned} & (x+3)(x+5)=(x+3) x+(x+3) 5 \\ & =x^{2}+3 x+5 x+15 \\ & =x^{2}+8 x+15 \end{aligned}$ Notice that the terms in this expanded expression are just the parts of the area in the rectangular model.
26. Use the Distributive Property to write the expression in expanded form. $(x-2)(x-6)$	28. $\begin{aligned} & (x-2)(x-6)=(x-2) x-(x-2) 6 \\ & =x^{2}-2 x-6 x \ldots \ldots . . \text { Not completed here. } \end{aligned}$ (Note: This question is challenging because of the negative signs. To help you think about how to complete the problem it might help to compare this to $\begin{aligned} & (x-2)(x+6)=(x-2) x+(x-2) 6 \\ = & \left.x^{2}-2 x+6 x-12\right) \end{aligned}$ Note: drawing a rectangular model is not so convincing here because of the negative terms involved in the two factors. But, if we just use the model as an organizer we can see the correct 4 terms in the expanded format.

	$x \quad-2$
	x x^{2} $-2 x$ -6 $-6 x$ +12
30. Write each expression in factored form. a. $x^{2}+13 x+12$. b. $x^{2}-13 x+12$ c. Etc.	30. a. Students might try to make a rectangle with this, using the clues in the " x " term and the " 12 " term to find the length and width of the rectangle. Or they may try to use the Distributive Property as follows: $\begin{aligned} & x^{2}+13 x+12=x^{2}+12 x+1 x+12 \\ & =x(x+12)+1(x+12) \\ & =(x+12)(x+1) \end{aligned}$ b. As above, the area model would be:
	Notice that the negative terms on the dimensions may make this strategy less convincing. Or, using the Distributive Property:

	$\begin{aligned} & x^{2}-13 x+12=x^{2}-1 x-12 x+12 \\ & =x(x-1)-12(x-1) \\ & =(x-1)(\ldots . .) \text { Not completed. } \end{aligned}$
40. Give the line of symmetry, the x and y-intercepts, and the maximum or minimum point for the graph of each equation. a. $y=(x-3)(x+3)$ b. $x(x+5)$ c. $(x+3)(x+5)$ d. etc.	40. a. All of this information can be gleaned from the equation, without resorting to making the actual graph. For the equation $y=(x-3)(x+3)$, there are two ways that the y value can be zero: when x $=3$ and when $x=-3$. If $x=3$ then $y=(3-3)(3+3)=0$. So $(3,0)$ is an x-intercept. Likewise $(-3,0)$ is an intercept. (Students should recall Problem 2.1, where they investigated and graphed $y=(x+2)(x-2) .)$ The y-intercept occurs when $\mathrm{x}=0$, so $y=(0-3)(0+3)=-9$. Thus, the y-intercept is $(0,-9)$. This gives us 3 points on the curve, as shown below: The line of symmetry is a vertical line which passes through a point midway between the two x intercepts, that is, midway between $(-3,0)$ and $(3,0)$. Thus, the line of symmetry

