Concept	Example
Exponential Growth: An exponential pattern of change can often be recognized in a verbal description of a situation or in the pattern of change in a table of (<i>x</i> , <i>y</i>) values. In general, one variable, <i>y</i> , is said to be growing exponentially with respect to another variable, <i>x</i> , if, for each increment of one unit in <i>x</i> , <i>y</i> increases by multiplying the last value of <i>y</i> by a constant factor.	Interruption1. Which of these tables illustrates a linear growth pattern for y, and which an exponential growth pattern? aab \boxed{X} Y011329327481
	c d x y 0 1 2 6 3 10 4 15 a The y-values change by a factor of 3 as the x values change by increments of 1. Thus, 1 x 3 = 3, 3 x 3 = 9, 9 x 3 = 27 etc. This is an exponential or multiplicative pattern of growth. b The y-values change by increasing by 3 each time the x values change by increasing by 3 each time the x values change by and increment of 1. Thus, 5 + 3 = 8, 8 + 3 = 11, 11 + 3 = 14 etc. This is a linear or additive growth pattern. (See Moving Straight Ahead unit for more information on linearity.) c Shows neither exponential nor linear pattern of growth (though there is a pattern). d This is an exponential pattern of growth. The multiplicative factor is 1.5. Thus 100 x 1.5 = 150, 150 x 1.5 = 225 etc. Note: It is important to distinguish between a constant growth <i>factor</i> (multiplicative), as just illustrated in an exponential pattern, and the

Vocabulary: Growing, Growing, Growing.

Growth Factor The constant multiplicative factor referred to for Exponential Growth (above) is called the growth factor . This constant factor can also be obtained by dividing each successive <i>y</i> -	Si e. a.		<i>a patte</i> <i>1?</i> rowth f	<i>rn of e.</i> actor is	<i>xponei</i> s 3.	the two	
value by the previous <i>y</i> -value.	tf n (t fc e	ne table hold is re hime, are hilow a p ssuming xponeni	below. ecorde ea) pair pattern g that t tial, wh	The a d every s are g of exp he pati	area co / 24 ho graphe onentia tern of e grov	d they s al growth growth vth fact	by the hen the ceem to h. is f or ?
	i	Time n	0	1	2	3	4
		days Area n square cm	3.2	4	5.1	6.24	7.8
	W	e have	$\frac{4}{3.2} =$	1.25,	<u>5.1</u> = 1 4	1.275, <u>6</u>	0
	co m w ra bo th	onstant. easurin ould no itio, eve est fit to ese gro	Since g in an t expec n if an this sit	this da exper t to fin expon- tuation	ata is c imenta d exac ential p . Ther ould gi		t by j, we same sa the veraging
Exponential Equations Examining the growth pattern leads to a generalization that can be expressed as an equation: $y = ab^x$, where <i>b</i> is the growth factor, and <i>a</i> is the "starting" value, or the value of y when $x = 0$. The independent	re a	value multip that fit The g	<i>hips in</i> rowth f is <i>1</i> . T ly by 3 s this p rowth f	<i>examp</i> actor is The <i>x</i> te . There battern actor is	<i>le 1.</i> s <i>3</i> . Thells howefore, the state of the second se	ne start i w many the equa 1(3) ^x . The init	times to ation

variable, <i>x</i> , is an exponent; it tells how many times to multiply by the growth factor. (In the contexts in this unit x is a whole number. In general, x can be any real number.) y-intercept or initial value : In the table the initial value is the value of y when x = 0. On the graph this appears as the y-intercept (see below.) Students can find the y-intercept or initial value from the equation or from the graph or from the table.	to multiply by 1.5. Therefore, the equation that fits this pattern is $y = 100(1.5)^{\times}$. 5. Find the equation that fits the exponential growth pattern shown in the table below. x 2 5 6 9 y 4500 15187.5 22781.25 76886.71875 In this example the table is incomplete; that is, it does not offer convenient values for y for every increment of 1 in x. This is not a problem as long as we are given that the underlying pattern is exponential growth. Comparing (5, 15187.5) to (6, 22781.25) we have a growth factor of $\frac{22781.25}{15187.5} = 1.5$. The other parameter we need is the starting value, that is the value of y when x = 0. To obtain this we can work backwards in the table, dividing by 1.5 at each stage. This produces X 0 1 2 Y 2000 3000 4500 Now we know the starting value and the growth factor. The equation that fits this exponential relationship is y = 2000(1.5)^{\times}.
Graphs of Exponential Growth Relationships: Have a characteristic shape, which is created by the multiplicative nature of the growth. In the graph of the <i>exponential</i> equation $y = ab^x$ the starting value or y –intercept is $y = a$ when x = 0; at $x = 1$ we have $y = ab$; at $x = 2$ we have $y = ab^2$. In other words the graph of $y = ab^x$ will show a vertical change of ab - a = a(b - 1) between $x = 0$ and $x = 1$; the vertical change will be $ab^2 - ab = ab(b - 1)$ between $x = 1$ and $x = 2$ etc. The vertical change is not constant. It increases by a multiplicative factor of b every time x increases by 1 unit. Compare this to	 6. Compare the graphs of y = 2x + 1 and y = 2^x. Specifically how does the vertical change in y values indicate that the first equation is linear and the second is exponential. In the graphs of y = 2^x (top graph) and y = 2x + 1 (bottom graph), the horizontal change is the same. Both graphs show a y intercept at (0,1). On the graph of y = 2x + 1, the vertical change is a constant; 2 is added each time to the y-value, as x increases by 1 unit. This produces a straight line, slope 2, characteristic of a linear function. On the graph of y = 2^x the vertical change

the graph of the <i>linear</i> equation $y = mx + b$. The value of y increases by adding <i>m</i> for each increment of 1 unit in x. The y-intercept is b. Thus starting at $x = 0$ we have $y = b$; at $x = 1$ we have $y = b + m$; for $x = 2$ we have $y = b + 2m$ etc. In other words the graph of $y = mx + b$ will show a vertical change of <i>m</i> for each increase of 1 unit in x. Note: Exponential relationships can also be defined for negative and non-integer exponent values, though students do not work with these values for the independent variable in this unit. The related graphs are <i>continuous</i> <i>curves</i> (rather than graphs of plotted points) with shapes similar to those shown above. The graph of any exponential growth pattern, $y = a(b)^x$ may show a slow increase at first but grows at an increasing rate because its growth is multiplicative. The graph curves upward from left to right.	increases by a multiple of the growth factor 2 as the graph rises; thus, first the vertical change is 2, then 2 x 2, then 2 x 2 x 2 etc. This pattern of increasing change is characteristic of an exponential function.
Growth Rates In this unit, growth rate is used the way we see that terminology in everyday settings, to compare a current value to a starting value by indicating the percentage by which the starting value has changed. This is different from <i>growth factor</i> . The two are related in a particular way. In general, growth rate + 1 = growth factor. For example, growth rate of 5% is the same as a growth factor of 100% + 5% = 105%.	 7. If the cost of a cell phone increases from \$80 to \$120 we can say that the increase is \$40. What is this as a growth rate? We can say that the percentage increase is 40/80 = 50%. As a growth rate this is 0.5. 8. The following table indicates the rise in a family's medical expenses over the past 3 years (numbers have been simplified). Is this an exponential relationship? If so what is the growth factor and what is the growth rate? 1. Time 0 1 2 3 Prices \$100 118 139.24 164.30

	$\frac{118}{118} = \frac{139.24}{118} = \frac{164.30}{118} = 1.18$. Since
	100 118 139.24 there is a constant growth factor we may conclude that this data can be represented by an exponential relationship. The growth factor is 1.18 or 118%. Of this 118%, 100% represents the original price and 18% represents the percentage increase. Thus the growth rate is 18%.
	9. An investment offers an effective growth rate of 6%, on a starting amount of \$1000. What are the values of the investment in the first 3 years? What is the growth factor ? And what is the equation that fits this relationship between values and time?
	The growth rate is given as 6%. This means that the value of the investment is 6% higher each year than it was the prior year. We can calculate the value of the investment each year by taking 6% of the prior year value and adding this on, or we can take 106% of the prior year's value. Thus, we can calculate $0.06(1000) + 1000 = 1060$, or $1.06(1000) = 1060$.
	Time 0 1 2 3 Value 1000 1060 1123.60 1191.02 The growth factor is 1.06, and the starting value is 1000. So the equation is $V = 1000(1.06)^t$. V V V
Exponential Decay Exponential models also describe patterns in which the value of a dependent variable decreases as time passes. In this case, the constant multiplicative factor is referred to as the <i>decay factor</i> . Decay factors work just like	10. An agricultural student is testing a new pesticide. The pesticide claims to reduce the number of crop eating insects by 80% at each application. The student estimates the number of pests and then sprays a test plot once a day. She does this for 5 days. Here are the results.
growth factors, only they result in decreasing relationships because they are less than 1.	day01234Number320802460of pests </td
	The graph of the pairs (day, pests) looks like

Graphs of Exponential Decay Relationships The basic pattern of exponential decay	It is helpful to think of the decay rate as the value <i>lost</i> and the decay factor as the value <i>left</i> . Thus an 80% decay rate means that 80% of the value is lost and 20% is left. 11. The following is the graph of $y_1 = 100(0.8)^x$. a. Compare to the graph of $y_2 = 100 - 20x$. b. Explain why there is no x intercept for y_1 .
involves change from one point in time to the next by some constant factor. For decay, the change factor is between 0 and 1 and the graph curves downward from left to right, approaching the <i>x</i> -axis but never reaching it.	a. $\begin{array}{c c c c c c c c c c c c c c c c c c c $

	it is always 80% of some positive quantity. (In practical situations we might say the amount left is zero because it is too small to be detected.)
--	---