Vocabulary: Growing, Growing, Growing.

variable, x, is an exponent; it tells how many times to multiply by the growth factor. (In the contexts in this unit x is a whole number. In general, x can be any real number.)
y-intercept or initial value: In the table the initial value is the value of y when $x=0$. On the graph this appears as the y-intercept (see below.) Students can find the y-intercept or initial value from the equation or from the graph or from the table.

Graphs of Exponential Growth Relationships:

Have a characteristic shape, which is created by the multiplicative nature of the growth. In the graph of the exponential equation $y=a b^{x}$ the starting value or y-intercept is $y=a$ when $x=0$; at $x=1$ we have $y=a b$; at $x=2$ we have $y=a b^{2}$. In other words the graph of $y=a b^{x}$ will show a vertical change of $a b-a=a(b-1)$ between $x=0$ and $x=1$; the vertical change will be $a b^{2}-a b=a b(b-1)$ between $x=1$ and $x=2$ etc. The vertical change is not constant. It increases by a multiplicative factor of b every time x increases by 1 unit. Compare this to
to multiply by 1.5. Therefore, the equation that fits this pattern is $y=$ 100(1.5) ${ }^{\mathrm{x}}$.
5. Find the equation that fits the exponential growth pattern shown in the table below.

x	2	5	6	9
y	4500	15187.5	22781.25	76886.71875

In this example the table is incomplete; that is, it does not offer convenient values for y for every increment of 1 in x. This is not a problem as long as we are given that the underlying pattern is exponential growth.
Comparing $(5,15187.5)$ to $(6,22781.25)$ we
have a growth factor of $\frac{22781.25}{15187.5}=1.5$.
The other parameter we need is the starting value, that is the value of y when x $=0$. To obtain this we can work backwards in the table, dividing by 1.5 at each stage.
This produces

X	0	1	2	\ldots
Y	2000	3000	4500	

Now we know the starting value and the growth factor. The equation that fits this exponential relationship is $\mathrm{y}=2000(1.5)^{\mathrm{x}}$.
6. Compare the graphs of $y=2 x+1$ and $y=2^{x}$. Specifically how does the vertical change in y values indicate that the first equation is linear and the second is exponential.

In the graphs of $y=2^{x}$ (top graph) and $y=$ $2 x+1$ (bottom graph), the horizontal change is the same. Both graphs show a y intercept at $(0,1)$.

On the graph of $y=2 x+1$, the vertical change is a constant; $\mathbf{2}$ is added each time to the y-value, as x increases by 1 unit. This produces a straight line, slope 2 , characteristic of a linear function. On the graph of $y=2^{x}$ the vertical change
the graph of the linear equation $\mathrm{y}=\mathrm{mx}+\mathrm{b}$. The value of y increases by adding m for each increment of 1 unit in x . The y -intercept is b . Thus starting at $x=0$ we have $y=b$; at $x=1$ we have $y=b+m$; for $x=2$ we have $y=b+$ 2 m etc. In other words the graph of $\mathrm{y}=\mathrm{mx}+$ b will show a vertical change of m for each increase of 1 unit in x.

Note: Exponential relationships can also be defined for negative and non-integer exponent values, though students do not work with these values for the independent variable in this unit. The related graphs are continuous curves (rather than graphs of plotted points) with shapes similar to those shown above.

The graph of any exponential growth pattern, $y=a(b)^{x}$ may show a slow increase at first but grows at an increasing rate because its growth is multiplicative. The graph curves upward from left to right.

Growth Rates

In this unit, growth rate is used the way we see that terminology in everyday settings, to compare a current value to a starting value by indicating the percentage by which the starting value has changed. This is different from growth factor. The two are related in a particular way.

In general, growth rate +1 = growth factor. For example, growth rate of 5% is the same as a growth factor of $100 \%+5 \%=105 \%$.
increases by a multiple of the growth factor 2 as the graph rises; thus, first the vertical change is 2 , then 2×2, then $2 \times 2 \times 2$ etc. This pattern of increasing change is characteristic of an exponential function.

7. If the cost of a cell phone increases from $\$ 80$ to $\$ 120$ we can say that the increase is $\$ 40$. What is this as a growth rate?

We can say that the percentage increase is $\frac{40}{80}=50 \%$. As a growth rate this is 0.5 .
8. The following table indicates the rise in a family's medical expenses over the past 3 years (numbers have been simplified). Is this an exponential relationship? If so what is the growth factor and what is the growth rate?

Time	0	1	2	3
Prices	$\$ 100$	118	139.24	164.30

	9. An investment offers an effective growth rate of 6%, on a starting amount of $\$ 1000$. What are the values of the investment in the first 3 years? What is the growth factor? And what is the equation that fits this relationship between values and time? The growth rate is given as 6\%. This means that the value of the investment is 6% higher each year than it was the prior year. We can calculate the value of the investment each year by taking 6% of the prior year value and adding this on, or we can take 106% of the prior year's value. Thus, we can calculate $0.06(1000)+1000=1060$, or $1.06(1000)=$ 1060.				
	Time	0	1	2	3
	Value	1000	1060	1123.60	1191.02
	The growth factor is 1.06 , and the starting value is 1000 . So the equation is$V=1000(1.06){ }^{\mathrm{t}}$				
Exponential Decay Exponential models also describe patterns in which the value of a dependent variable decreases as time passes. In this case, the constant multiplicative factor is referred to as the decay factor. Decay factors work just like growth factors, only they result in decreasing relationships because they are less than 1.	10. An agricultural student is testing a new pesticide. The pesticide claims to reduce the number of crop eating insects by 80% at each application. The student estimates the number of pests and then sprays a test plot once a day. She does this for 5 days. Here are the results.				
	day	0	1	2	4
	Number of pests	320	80	24	0
	Do these results confirm the claim? The graph of the pairs (day, pests) looks like				

	It is helpful to think of the decay rate as the value lost and the decay factor as the value left. Thus an 80% decay rate means that 80% of the value is lost and 20% is left.
Graphs of Exponential Decay Relationships The basic pattern of exponential decay involves change from one point in time to the next by some constant factor. For decay, the change factor is between 0 and 1 and the graph curves downward from left to right, approaching the x-axis but never reaching it.	11. The following is the graph of $y_{1}=100(0.8)^{x}$. a. Compare to the graph of $y_{2}=100-20 x$. b. Explain why there is no x intercept for y_{1}. a. The graph of y_{2} shows a constant vertical change of 20 in y values for each change of 1 in $x . y_{2}$ is a linear function. The graph of y_{1} shows a changing vertical change in y. First the drop is 20 , from $x=0$ to $x=1$. Then the drop is 16 , or $0.8(20)$, from $x=1$ to $x=2$. Then the drop is 12.8 , or (0.8)(16), from $x=2$ to $x=3$. In other words the vertical change is decreasing by a factor of 0.8 for each increase of 1 unit in x. This makes the curve steep to start with and less steep as x increases. b. To continue the table for y_{1} we have to multiply each y value by 0.8 to find the succeeding y value. Each y-value is smaller than the last, but can never be zero because

	it is always 80\% of some positive quantity. (In practical situations we might say the amount left is zero because it is too small to be detected.)

