Homework Examples from ACE: How Likely Is It?

ACE Question	Possible Solution
Investigation 1	
3. Kalvin flipped a coin five days in a row and got tails every time. He told his mother there must be something wrong with the coin. Do you think there is something wrong with the coin? How could Kalvin find out?	3. This question addresses the idea of probability as "what is to be expected over the long term." Kalvin should toss the coin many more times. It is unusual to get 5 tails in a row, but not impossible. If he tossed the coin 100 times and got many more tails than heads he might suspect that the coin is not fairly balanced. Theoretically, each toss of a fair coin should have a 50% chance of turning out to be a tail, but we should not be surprised if this 50% figure does not occur over a small number of tosses. (If he repeated the experiment (5 tosses of a fair coin) a hundred times and recorded how many times he got 5 tails in a row he would find that this will occur purely by chance about 3 times in a 100.)
4. Len flipped a coin three times and got heads every time. What are the chances he will get tails on his next toss? Explain your reasoning.	4. The probability of HHHT is the same as the probability of HHHH . Each coin toss is independent of the last toss, even though it seems that some combinations are less likely than others. In other words, the coin has no memory of what the last toss was, and so there is no change in the probability of the outcome of a single toss; each toss has a 50% chance of being H , and a 50% chance of being a T . Note: if we had asked before any tosses had taken place whether it was more likely to get 4 heads in 4 tosses, or 3 heads and a tail, then we could say that HHHH was less likely than 3 heads and a tail. But this is because there are 4 ways to get 1 tail: HHHT, HHTH, HTHH, THHH.
9. Kalvin's sister Kyla came up with yet another way for Kalvin to pick his breakfast. She put 1 blue marble and 1 red marble in each of two bags. She explained that each morning Kalvin should choose one marble from each bag. If the marbles are the same color, Kalvin gets to eat Cocoa Blast. If they are different colors, he must eat Health Nut	9. In the first bag there are two equally likely outcomes: red or blue. Likewise for the second bag. Therefore, this situation is exactly like tossing a coin twice or tossing two coins; each bag is analogous to a coin toss, and "red" is analogous to "head" and "blue" to "tail." Note: This question foreshadows the idea of simulation. In simulations a model is chosen

Flakes. Explain how drawing one marble from each of the two bags and tossing two coins are similar.	which has the same underlying probabilities as the situation to be investigated. The purpose in choosing the model is to set up repetitions of an experiment, using the model rather than the real situation, because the model is more convenient.

the two possible outcomes-landing on a space with 1 , landing on a space with 2-equally likely? If not, which outcome has a greater theoretical probability, landing on 1 or landing on 2? Explain your reasoning.
a.

b.

c.

landing on " 2 " because the area is larger. But the rotation of the spinner is what creates all the possibilities, and so the possibilities are determined by the angle of rotation. Because of the placement of the center of the spinner, in turning 180 degrees clockwise from pointing vertically up to pointing vertically down the spinner sweeps through "2." This is half of a complete rotation, so the outcomes are equally likely.
b. Now the amount of rotation needed to sweep through " 2 " is larger than 180 degrees, so there is a greater chance of " 2 " than of " 1 ."
c. The amount of rotation needed to sweep through " 1 " is greater than 180 degrees, so " 1 " has a greater probability that " 2. ."
5. Mollie is designing a game for a class project. She made the three spinners shown here and experimented with them to see which one she liked best for her game. She spun each spinner 20 times and wrote down her results, but she forgot to record which spinner gave which set of data. Which spinner most likely gave each data set? Refer to the data sets on the next page. Explain your answer.
5. Spinner A has 3 equally likely outcomes. We should look for a list that reflects this, knowing that with 20 trials these theoretical probabilities will not occur. The second data set has 7 " 1 's" and 5 " 2 's" and 8 " 3 's." This is close to the theoretically expected outcome for spinner A.

Spinner B should have " 2 " occurring half of the time, and " 1 " and " 3 " occurring equally often. The third data set has 11 " 2 ' s " and 4 " 1 's" and 5 " 3 's."

First data set12321121222321222322	Spinner C should produce " 2 " half the time in the long term, and should produce fewer " 3 's" than "1's. The first data set has 12 " 2 ' s " and 5 " 1 's" and 3 " 3 's."			
Second data set 23113331123222111333				
$\begin{gathered} \text { Third data set } \\ 1233122232122232231 \end{gathered}$				
Investigation 4.				
6. If Katrina cannot curl her tongue, is it possible that both of her parents can curl their tongues? Why or why not?	6. If Katrina cannot roll her tongue then she has inherited tt from her parents. She inherited t from her mother, so her mother must have had either tt or tT or Tt , but she cannot have had TT. Likewise with her father. If both parents have tT then there is a 1 in 4 chance that their offspring can have tt . Thus, both Katrina's parents could have tT and be able to roll their tongues.			
	Mother			
	Father		t	T
		t	$\begin{gathered} \mathrm{tt} \\ \text { (Katrina) } \end{gathered}$	tT
		T	Tt	TT

