Vocabulary: Prime Time
 Concept

Factor: A whole number that divides into another whole number evenly (that is, with no remainder and a whole number quotient).

Example
4 is a factor of 24 because $4 \times ?=24$ leads to the conclusion that the other factor is the whole number 6 . We can use the term divisor interchangeably with factor.

2 and 12 are a factor pair for 24 , as are 3 and 8 .

24 is a multiple of 8 , because 8 is a factor of 24.

19 is a prime because the only factors are 1 and 19 , but 9 is not a prime because it has factors $1,3,9$.
14 is a composite number because 14 has factors 2 and 7 , as well as 1 and 14 .

The prime factorization of 24 is $2 \times 2 \times 2 \times$ 3 , where all of the factors are prime. It is true that $24=3 \times 8$ or $2 \times 4 \times 3$ or $6 \times 2 \times 2$ etc. But, these last three factorizations are not prime factorizations, because " 8 " and " 4 " and " 6 " are not prime numbers. See below for an example of finding a prime factorization of 40.

If we start with 40 and think of this as 2 x 20, then we should "break down" 20 further, since it is not prime. Thus, $40=2$ $\times 20=2 \times 2 \times 10=2 \times 2 \times 2 \times 5$. This is a prime factorization of 40 . If we started with a different factor pair, say $40=5 \times 8$, and then "broke down" 8 further, we would get $40=5 \times 8=5 \times 2 \times 2 \times 2$. The resulting prime factorization of 40 is the same (except for order) no matter how we begin on the process.

Greatest Common Factor: A common factor is any number that is a factor that 2 or more whole numbers. One way to find common factors is to make prime factorizations of the two numbers in question.

Lowest Common Multiple: The LCM is the lowest whole number that is a multiple of 2 or more whole numbers. One way to find the LCM is to make prime factorizations of the target numbers.
$36=2 \times 2 \times 3 \times 3$ and $84=2 \times 2 \times 3 \times 7$. We see that the factors 2,2 and 3 appear in both prime factorizations; so 2, 3, 6 (combining 2 and 3), 4 (combining 2 and 2) and 12 (combining 2 and 2 and 3) are common factors of both 36 and 84. 12 is the greatest of these so 12 is the GCF.
$36=2 \times 2 \times 3 \times 3$ and $84=2 \times 2 \times 3 \times 7$. We need the lowest combination of prime factors that will include ALL of the prime factors for each of these numbers. If we start with $2 \times 2 \times 3 \times 3$ (to "cover" 36) then we see that we need to extend this to 2×2 x $3 \times 3 \times 7$ (to "cover" 84). So $2 \times 2 \times 3 \times 3$ $x 7$ or 252 is the lowest whole number that is a multiple of both 36 and 84 .

25 and 21 are relatively prime because 25 $=5 \times 5$ and $21=3 \times 7$, so there are no prime factors in common. 25 and 30 are not relatively prime because $25=5 \times 5$ and $30=2 \times 3 \times 5$, so they have a " 5 " in common. 26 and 13 are not relatively prime because they each have 13 as a factor.

12 can be thought of as 2×6 (2 rows of 6) or 3×4 or 1×12.

See Prime Time Homework Examples from ACE on this website. (Investigation 2 \#17)

