Ruins of Montarek: Concept with Explanation

Concept	Example
Base Plan a plan that shows 2 pieces of information: the "footprint" of a building and the height of each column built on that base. With this information only one building is possible.	1. With this plan we know that we have to arrange 8 cubes as shown in the perspective drawing below.
Base Outline the "footprint" of a building without the additional information about the heights of the columns. An infinite number of buildings can be built on the same base outline.	2. The base outline shown below is compatible with the building pictured in example 1, as well as the building pictured here:

	left 5. Notice that if you drew a vertical line through the middle of the top view then one half would be identical to the other half, but reversed. We can say that one half of the top view is the mirror image of the other half.
Line Symmetry is a property of any shape where one half of the shape is the mirror image of the other half.	6. The top view shown in example 4 above has line symmetry, and the line of symmetry has been drawn to show how this divides the shape into two halves that are mirror images. Note: This idea of a line of symmetry is introduced in Shapes and Designs, and investigated rigorously in Kaleidoscopes and Hubcaps. A shape might have n line of symmetry, such as a scalene triangle, or one line of symmetry, such as an isosceles triangle, or a 2 lines of symmetry, such as a non-square rectangle, or 3 lines of symmetry,

	But exactly the same orthogonal views could lead to a different building. The following base plans are compatible with the same orthogonal views. And And The minimum number of blocks used would be 8 , and the maximum would be 10 . There is only one maximal building, but as you can see above there is more than one arrangement of the minimum number of blocks.
Isometric drawing is a drawing where equal edges on the real-life model are represented by equal lengths on the drawing. Isometric dot paper facilitates such drawings.	8. The following are isometric drawings. The first could be made with 4 cubes. Notice that you can not see every edge of every cube, unless the cubes were transparent.

10.	10 Sometimes a perspective drawing or an isometric drawing can not show a part of every cube in a building. For example, if you make the building that goes with the following base plan you will find that the cube designated in color is hidden when the building is viewed from a front-top-right- perspective.
\qquad1 2 1 2 1 1	

