Selected ACE: Say It With Symbols
 Investigation 1: 19, 22, 27, 31.
 Investigation 2: 6, 7, 8, 23, 29. Investigation 3: 21, 25.
 Investigation 4: 8-10, 18.
 Investigation 5: 7, 12.

ACE Problem	Possible solution
Investigation 1	
19. Draw a divided rectangle for the expression. Label the lengths and the area. Write an equivalent expression in expanded form. $x(x-6)$	The area model (see Frogs and Fleas) is familiar to students and makes a useful visual representation of the product of 2 factors, one of which is the length and the other is the width. 19. Suppose that x is the width of this rectangular area, then the length has to be $x-6$, and the area is $x(x-6)$. The rectangle on the left has the required length and width. It has area $\mathrm{A}_{1}=x(x-6)$. The rectangle on the right has length 6 and width x; so $\mathrm{A}_{2}=6 x$. The two rectangles together make a square (outlined in red) with each side length x, so the area of the red square $=x^{2}$. Now $\mathrm{A}_{1}=$ large square $-\mathrm{A}_{2}$. So $x(x-6)=x^{2}-6 x$. As students become more familiar with the Distributive Property they can rewrite any expression from factored form to expanded form. The area model serves as an initial explanation and bridge to the manipulation of the symbols.
22. Draw a divided rectangle for the expression. Label the lengths and the area. Write an equivalent expression in expanded form. $x^{2}-2 x$	22. If we try to make sense of the symbolic expression then we see that we have a "square" minus a " 2 by x rectangle". As an area model this looks like:

	$100=2.50 \mathrm{~V}-500 .$ This gives the number of visitors V needed to make a profit of $\$ 100$. (Not done here.) We still have to substitute that answer for V into the second equation and solve for R to find out what probability of rain is associated with the required number of visitors. [Alternatively, use the equation $P=2.50(600-500 R)-500$, and substitute $P=100$, then solve for R.]
8. See \#6 for equations. The manager estimates the daily employee bonus fund B (in dollars) from the number of visitors V using the equation $B=100+0.50 \mathrm{~V}$. a. Suppose the probability of rain is 30%. What is the daily employee bonus fund? b. Write an equation that relates the employee Bonus B to the probability of rain. c. Suppose the probability of rain is 50%. Use your equation to calculate the employee-bonus fund. d. Suppose the daily employee bonus fund is $\$ 375$. What is the probability of rain?	8. a. We have to use 2 equations here: $B=100+0.5 \mathrm{~V} \text { and } V=600-500 R .$ If we do this in 2 stages we have $V=600-500(0.3)=450$. This says that when the probability of rain is 30% we can expect 450 visitors. Now use this in $B=100+0.5 \mathrm{~V}$ to find out what the employee bonus will be. (Not done here.) b. We can combine the 2 equations used in part a, by substituting the expression for V from the second equation into the first equation. (See alternative explained in \#6 above.) You should get an equation that has only 2 variables, B and R, starting $B=100+0.50(\ldots \ldots)$. C. This can be answered by substituting 0.5 for R in the equation you found in part c. (Not done here.) d. Assuming that you found the correct equation in part b, you should now be solving: $375=100+0.5(600-500 R) \text { for } R .$ You will probably want to use the Distributive Property to rewrite this equation as $375=100+300-250 R$ before you start applying the Properties of Equality (see \#23 below).
23. Use Properties of Equality to solve: $9-4 x=\frac{3+x}{2}$	23. Properties of Equality allow us to rewrite an equation by adding or subtracting or multiplying or dividing on both sides of the equation. As long as we do the same to both sides of the equation the equals sign is still true. The goal is to use these properties to produce simpler, but equivalent, equations. $9-4 x=\frac{(3+x)}{2}$ We might begin this by multiplying both sides by 2 . $2(9-4 x)=\frac{2(3+x)}{2}$

	The point of doing this is to get rid of the fraction on the right side. $18-8 x=3+x$ Now we might add $8 x$ to each side, producing: $18=3+9 x .$ Students have practiced solving this type of equation many times, so they should have no trouble getting the solution: $X=\frac{15}{9} .$ Alternatively, we might handle the fraction on the right side more directly. Applying the Distributive Property we have: $9-4 x=\frac{3}{2}+\frac{x}{2} \text {, or }$ $9-4 x=1.5+0.5 x$ Again students should have no trouble completing the solution. They first learned how to solve equations like this in Moving Straight Ahead, and reinforced this many times since then, particularly in Thinking With Mathematical Models.
29. For the equation $y=(x+2)(x+5)$, find each of the following. Explain how you found each. a. y-intercept b. x-intercept(s) c. maximum or minimum point. d. line of symmetry.	29. This equation is not a linear equation; it is a quadratic equation in factored form. Students studied quadratic equations in Frogs and Fleas. They know that the graphs of quadratic equations are parabolas. In this unit they have used an area model and the Distributive Property to rewrite a quadratic expression in factored form into an equivalent quadratic expression in expanded form. a. The y-intercept is the point where $x=0$. Substituting in this equation we have $y=(0+2)(0+5)=10$. (Alternatively, students might be working with the equivalent equation $y=x^{2}+7 x+10$.) b. To find the x-intercepts students might use their graphing calculators to look at the graph or table for points where $y=$ 0 . Or they might solve $0=(x+2)(x+5)$. The only way that a product of factors can result in zero is if one or both of the factors is zero. Thus there are two possible values of x that will give zero for y. - If $x=-2$ we have $y=(-2+2)(-2+5)=0$, and - if $x=-5$, we have $y=(-5+2)(-5+5)=0$. Therefore there are 2 values for x that give $y=0$. The x-intercepts are $x=-2$ and $x=-5$. C and d. In Frogs and Fleas students learned to use the symmetry of the graph to find the line of symmetry and the vertex. The line of symmetry will cross the x-axis halfway between the x-intercepts, that is halfway between $x=-2$

| | and $x=-5$, at $x=-3.5$. |
| :--- | :--- | :--- |

	So $x=0$ and $x=-1.5$ are solutions. (Students might also use a table to find these solutions.) [Alternatively, students might rewrite this equation in factored form: $x(x+1.5)=0$. We can deduce from this form that the only way that the product of the two factors can be zero is if either one or both are zero. Therefore, we can deduce that either $x=0$, or $x+1.5=0$. This gives us the same two solutions: x could be 0 or -1.5 .]
25. Use an area model to factor a. $x^{2}+8 x+15$.	25. Students have to find the dimensions of a rectangle whose area is $x^{2}+8 x+15$. The first clue is the constant term: 15 . We need factors of this term. These could be 15 times 1 or 5 times 3. Using 15 and 1 as factors of 15 results in the first arrangement below. Notice that the area of the rectangle does NOT sum to $x^{2}+8 x+15$. 15 The second arrangement DOES sum to the desired $x^{2}+8 x+15$. Therefore, $x^{2}+8 x+15$ can be rewritten as $(x+5)(x+3)$.
Investigation 4	
8-10. See student text for graphs.	8. Students should recognize the characteristic graph shape for each type of function. They know that linear functions (see

8. Which graphs represent linear, quadratic, or exponential functions? 9. Make a table of y values for $x=$ $1,2,3,4,5,6$ for each function. 10. Write an equation for each function. Describe your strategy.	Moving Straight Ahead) are represented by straight line graphs (graph 1), and that quadratic functions (see Frogs and Fleas)are represented by parabolas (graph 3). They also know that exponential growth functions (see Growing, Growing) are represented by graphs that show y-values increasing multiplicatively (each y-increase is related to the last y-increase by the same factor). The remaining graph is actually an inverse proportion relationship, where increases in x values cause decreases in y-values. Students studied this type of relationship in Thinking With Mathematical Models. 9. (Only graph 3 is addressed here.) The table of values for the quadratic relationship should show that points are symmetrically placed around the axis of the parabola. Students should also know that the differences in the y-values make a pattern, and that the differences of the differences (Second Differences, see Frogs and Fleas) will be a constant. This makes it possible to figure points that are not shown on the graph. Thus for graph 3: Continuing the pattern of change in the y-values we see that between $x=5$ and $x=6$ the y-values must decrease by 8 , which means that when $x=6$ the corresponding y-value must be $-10-8=-18$. (In this example the second differences are all -2.) 10. Graph 1 represents a linear relationship. The slope of this graph is $\frac{3}{1}$, so the constant rate of change for y, compared to x, is 3 . We can also see that the y-intercept is -2 . Putting this information into the general slope-intercept format of a linear equation, $y=m x+b$, gives us the equation $y=3 x-2$. We can check that all the points on the graph do indeed fit this equation. 18. a. Linear equations must all fit the format, $y=m x+b$. However, they may need to be rewritten to fit this format. Generally we are looking for equations in which we are sure that there is no power of x higher than 1. Equation \#2 obviously fits this format. But so also does equation \#4. If you use the Distributive property to rewrite equation \#4 you find it is:							
18. For parts a-c, use the set of equations below. 1. $y=x^{2}+8 x$. 2. $y=2 x$. 3. $y=4^{x-1}$ 4. $y=2(x-3)+6$. 5. $y=x(x+8)$								

6. $y=0.25\left(4^{x}\right)$ 7. $y=0.25^{x}$ 8. $y=17+x(x+3)$ 9. $y=(x+1)(x+17)$ a. Which equations represent linear, quadratic or exponential functions. b. Find any equations that represent the same function. c. Without graphing the equation, describe the shape of the graph of each equation in part b.	$y=2 x-6+6$, or simply $y=2 x$, equivalent to equation \#2. Quadratic equations must all fit the expanded format $y=a x^{2}+b x+c$, or the factored format $y=(a x+b)(c x+d)$. The first format is recognizable for the " x " term, and the second format is recognizable for its pair of linear factors. Of course, an equation is still considered to be quadratic if it is not in either of these forms, but CAN BE rewritten in one of these forms. Thus, equation \#1 is a quadratic in expanded form and equations \#5 and \#9 are equations in factored format. In addition there is one other quadratic equation, but it has to be rewritten to spot the " x " term. Exponential equations all fit the format $y=a(b)^{x}$. There are three exponential equations here. b. There are matches for equations 1, 2, and 3. (Students should be able to apply the Distributive Property to make the match for equations 1 and 2.) Equation 1 is a quadratic equation and one other quadratic equation is identical to it. Equation 2 is a linear equation and one other linear equation is identical to it. Equation 3 is an exponential equation and one other exponential equation is identical to it. (Students may need to make a table to see which two of the three exponential equations are identical.) c. See \#8 above for information about graph shapes.
Investigation 5.	
7. Look at the product of three consecutive whole numbers. For example: $\begin{aligned} & 1 \times 2 \times 3=6 \\ & 2 \times 3 \times 4=24, \\ & 3 \times 4 \times 5=60 . \end{aligned}$ a. What pattern do you observe? b. Make a conjecture about the product of three consecutive whole numbers. Explain why your conjecture is correct.	7. a. It looks like the product is always a multiple of 6 . Checking a few other example we see that: $4 \times 5 \times 6=120$, and $10 \times 11 \times 12=1320$. The pattern seems to always work. BUT, checking examples is no guarantee or proof that the pattern holds for ALL products of three consecutive numbers. b. We can conjecture that the product of three consecutive numbers is always $6 n$ for some integer n. ONE way that students might begin to think about this is to name the three consecutive numbers in some general way. We might observe that if the first is an even number then it could be written as $2 x$, and the others would then be $2 x+1$

b. Does this expression suggest another pattern in the cube buildings? e. Look for a different pattern in the buildings. Describe the pattern and use it to write a different expression for the number of cubes in the nth building.	e. Students might see this as a tower surrounded by 4 wings. The tower grows 1 higher each time, and is always the same height as the building number; the wings also grow by 1 cube each time. With this arrangement in mind we can see				
	Building n	1	2	3	4
	\# cubes	1 tower of 1 + No wings	1 tower of $2+$ 4 wings of 1	1 tower of $3+$ 4 wings of 2	1 tower of $4+$ 4 wings of 3
	This suggests that the nth building has: $C=1$ tower of $n+4$ wings of $(n-1)$.				

