Thinking With Mathematical Models: Homework Examples from ACE

ACE Question				
ACE Investigation 1				
2.				
The table shows the maximum weight a crane				
arm can lift at various distances from its cab.				
(See diagram in text.)				
Dist (ft) 12 24 36 48 60 Weight (pounds) 7500 3750 2500 1875 1500				

a. Describe the relationship between distance and weight for the crane.
b. Make a graph of the (distance, weight) data. Explain how the graph's shape illustrates the relationship you described in part a.
c. Estimate the weight the crane can lift at distances of 18,30 , and 72 feet from the cab.
d. How, if at all, is the crane data similar to the data from the bridge experiments in Problems 1.1 and 1.2?
2.
a. As the distance from cab to weight increases, the weight decreases. But the rate of change is not constant. (see Moving Straight Ahead) For every 12 feet increase in the distance from the cab, the weight decreases, but not by the same amount every time. The weight decreases, but at a decreasing rate; that is the change in the weight is less and less every time.
b. The graph shows the weight decreasing as distance increases.

Crane Lifting Capacity

The curve of the graph shows that the initial decreases in weight are much larger than later decreases in weight.
C. 18 feet is half way between 12 and 24 feet. So the predicted weight for 18 feet should be between 7500 and 3750 pounds. If the weight decreased at a constant rate, the predicted weight would be 5625 pounds, exactly half way between 3750 and 7500 pounds. BUT the weight seems to be falling at a faster rate at the start, so the correct prediction is probably closer to 3750 than to 7500 pounds. At this point any prediction

							between 5625 and 3750 pounds would be sensible. (Later students will know more about this pattern, and be able to make better predictions.) The same reasoning as above would put the predicted weight between 3750 and 2500 pounds, but closer to 2500 pounds. This time we don't have collected data on either side of 72 feet. The predicted weight has to be less than 1500 pounds. Students might note that the weight decreased by 375 pounds from distance 48 to distance 60 feet. 72 feet is 12 feet more than 60 feet, so some might predict that the weight would be $1500-375=1125$ pounds. Since the weight is decreasing, but at a decreasing rate, this prediction is too low. d. The weight held by the bridge decreased as the length increased, but not at a constant rate. Note: Students learn that this kind of relationship is called an inverse proportional relationship. This means that as the independent variable increases the dependent variable decreases, but not at a constant rate; in fact the product of the independent and dependent variables is a constant, for example, $x y=10$ or, in general, $x y$ $=a$ (which can also be written as $y=\frac{a}{x}$ etc.).
ACE Inve	tigati						
4. This Chihu	ble giv huas	from		eights ge 16	of purebred eeks.		a. When trying to decide where to draw a line that fits the data pattern, one wants to not let
Age	0	2	4	6	8		any one point be too influential. All points
Weight	4	9	13	17.5	21.5		should "pull" on the line, so that the placement of the line reflects an overall trend. There should be about the same number of data
Age	10	12	14	16			points above as below the line. One tries to
Weight a. G b.	25 ph th that e an	30	34	39) data ta pat e form	nd draw a n. $=m x+b$ for		adjust the placement of the line so that the "gaps" between the line and the data points are minimized. The line may pass through several data points, or just a few points, or "miss" all points.

your line. Explain what the values of m and b tell you about this situation.
c. Use your equation to estimate the average weight of Chihuahuas for odd-numbered ages from 1 to 15 weeks.
d. What average height does your linear model predict for a Chihuahua that is 144 weeks old? Explain why this prediction is unlikely to be accurate.

b. The equation given here should fit whatever line is drawn in part a. From hand-drawn lines we can figure slope by reading two points that seem to be exactly on the line. In this case the line might pass through $(6,17.5)$ and $(12$, 30) making the slope $=\frac{12.5}{5}=2.08$.
Students might read the intercept from the graph (looks like approximately 5) or use the calculated slope to count back to the y intercept. The " $y=m x+b$ " equation produced should have the calculated slope and intercept in place of " m " and " b " respectively. The intercept tells us the average weight of a Chihuahua at age zero, that is at birth. The slope tells us how much an average Chihuahua is expected to grow each year. Student equations will vary but should be similar to $\mathrm{W}=2.08 \mathrm{~A}+5$.
c. Substituting age $=1$ into the above equation we have $\mathrm{W}=2.08(1)+5=7.08$ ounces. The rest of the table is found by substituting appropriate values for age. Notice that these values will differ if a different line has been

	interval we will see that the rate is NOT constant, so this is not a linear relationship. Since every pair of values fits the equation $x y=100$ this is also an inverse variation. $(3,33)$ does not fit exactly; perhaps this is a rounding error. But the point $(3,33)$ would lie very close to the graph of $x y=100$, or $y=\frac{100}{x}$. 7. If we graphed these points the graph would look very like the characteristic curved shape of an inverse variation relationship, BUT there is no constant value for the product of the (x, y) values. In fact, the existence of a y-intercept should alert us to that. $(0)(100)=0$. None of the other (x, y) products are zero. Note: there will be no y-intercept on the graph of an inverse variation relationship. This is because neither $x(0)=a$, nor $(0) y=$ a could have a solution.
28. Jamar takes a 10-point history quiz each week. Here are his scores on the first 5 quizzes.: 8, 9 , $6,7,10$. a. Jamar misses the next quiz and gets a 0 . What is his average after 6 quizzes? b. After 20 quizzes, Jamar's average is 8 . He gets a 0 on the $21^{\text {st }}$ quiz. What is his average after 21 quizzes? c. Why did a score of 0 have a different effect on the average when it was the $6^{\text {th }}$ score than when it was the $21^{\text {st }}$ score?	28. a. Jamar had a total of 40 points after 5 quizzes. (An average of 8.) This total is unchanged after 6 quizzes, but now he has to divide by 6 to get his average score. Average $=\frac{40}{6}=6.7$ approx. b. Jamar must have accumulated a total of 160 points over 20 quizzes to average 8 per quiz. So, with the same total over 21 quizzes the average drops to $\mathrm{A}=\frac{160}{21}=7.6$. c. Students might argue that missing a quiz is like losing a potential 10 points. Spreading a loss of up to 10 points over 21 quizzes will have less effect than spreading the loss of 10 points over 6 quizzes. That is the value of $\frac{10}{\mathrm{n}}$ will decrease as n increases. $\frac{10}{6}$ per quiz is a greater loss than $\frac{10}{21}$ per quiz. Another way to think about this is to write an equation for the average after n quizzes, when the average after $n-1$ quizzes was 8 . If the

	average after $n-1$ quizzes was 8 then the total number of points is $8(n-1)$. If this $8(n-1)$ points remains unchanged because the next quiz is a 0 , then the average after n quizzes is $\frac{8(n-1)}{n}$. The graph or table of the relationship $\mathrm{A}=\frac{8(n-1)}{n}$ show that as n increases so does A, but at a slower and slower rate, and the old average of 8 is never regained.						
	n	2	3	4	5	6	7
	A	$\frac{8}{2}$	$\frac{16}{3}$	$\frac{24}{4}$	$\frac{32}{5}$	$\frac{40}{6}$	$\frac{48}{7}$
	We see that $\frac{48}{7}>\frac{40}{6}>\frac{32}{5}$ etc. And all of these fractions are less than 8.						

