Thinking With Mathematical Models: Homework Examples from ACE

ACE Question	1		Possible Answer						
ACE Investigation 1									
2. The table shows the maximum arm can lift at various distance (See diagram in text.)	n weight a es from it	a crane s cab.	 2. a. As the distance from cab to weight increases, the weight decreases. But the rate of change is not constant. (see <i>Moving Straight Ahard</i>). For every 12 feet 						
Dist (ft) 12 24 36	48	60	increase in the distance from the cab, the weight decreases, but not by the same						
Weight 7500 3750 2500 (pounds) 2500	1875	1500	 amount every time. The weight decreases, but at a decreasing rate; that is the <i>change</i> in the weight is less and less every time. b. The graph shows the weight decreasing as distance increases. 						
 a. Describe the relationship I and weight for the crane. b. Make a graph of the (dista data. Explain how the gra illustrates the relationship part a. c. Estimate the weight the cr distances of 18, 30, and 7 cab. d. How, if at all, is the crane data from the bridge expendence problems 1.1 and 1.2? 	between nce, wei ph's sha you deso ane can 2 feet fro data sim fiments i	distance ght) pe cribed in lift at om the ilar to the n	distance increases. Crane Lifting Capacity 12000 100000 100000 10000 1000						

								 between 5625 and 3750 pounds would be sensible. (Later students will know more about this pattern, and be able to make better predictions.) The same reasoning as above would put the predicted weight between 3750 and 2500 pounds, but closer to 2500 pounds. This time we don't have collected data on either side of 72 feet. The predicted weight has to be less than 1500 pounds. Students might note that the weight decreased by 375 pounds from distance 48 to distance 60 feet. 72 feet is 12 feet more than 60 feet, so some might predict that the weight would be 1500 – 375 = 1125 pounds. Since the weight is decreasing, but at a decreasing rate, this prediction is too low.
							d. N is In no co =	The weight held by the bridge decreased as the length increased, but not at a constant rate. ote: Students learn that this kind of relationship called an <i>inverse proportional relationship</i> . his means that as the independent variable creases the dependent variable decreases, but of at a constant rate; in fact the product of the dependent and dependent variables is a onstant, for example, $xy = 10$ or, in general, xy <i>a</i> (which can also be written as $y = \frac{a}{x}$ etc.).
ACE Inves	tigatio	on 2					4	
4. This tal Chihua	ble giv huas	ves av from b	erage w irth to a	veights o age 16 v	of pureb veeks.	ored	4. a .	When trying to decide where to draw a line that fits the data pattern, one wants to not let
Age Weight	0 4	2 9	4 13	0 17 5	ბ 21			should "pull" on the line, so that the placement
	-		15	17.5	۲.J			of the line reflects an overall trend. There
		<i></i>						should be about the same number of data
Age	10	12	14	16				adjust the placement of the line so that the
vveignt	25	30	34	39				"gaps" between the line and the data
a. Graph the (age, weight) data, and draw a							points are minimized. The line may pass through several data points, or just a few	
line that models the data pattern. b. Write an equation in the form $v = mx + h$ for					ern. v = mv		points, or "miss" all points.	
	ir lino	Evol	ain who	ne iuiiii at tho ve	y – 1118 Ju <u>os of</u>	7 <i>U</i> 101 m and		

your line. Explain what the values of m and b tell you about this situation.

- c. Use your equation to estimate the average weight of Chihuahuas for odd-numbered ages from 1 to 15 weeks.
- d. What average height does your linear model predict for a Chihuahua that is 144 weeks old? Explain why this prediction is unlikely to be accurate.

produced should have the *calculated* slope and intercept in place of "m" and "b" respectively. The intercept tells us the average weight of a Chihuahua at age zero, that is at birth. The slope tells us how much an average Chihuahua is expected to grow each year. Student equations will vary but should be similar to W = 2.08A + 5.

c. Substituting age = 1 into the above equation we have W = 2.08(1) + 5 = 7.08 ounces. The rest of the table is found by substituting appropriate values for age. Notice that these values will differ if a different line has been

	drawn in part a. However, the weight values found by students should be similar to those shown.								
	A	1	3	5	7	9			
	W	7.08	11.24	15.4	19.56	23.72			
	d. Substituting $A = 144$ into the above equation, we have $W = 2.08(144) + 5 = 304.52$ ounces or about 19 pounds. This is unreasonably heavy, not a good representation of an "average" weight of a Chihuahua that is 144 weeks (nearly 3 years) old. This illustrates that mathematical models, or in this case a line of best fit, can not be trusted to continue to model the data well when we stray too far from the given data.								
 26. The following formulas give the fare f in dollars that two bus companies charge for trips of d miles. Transcontinental: f = 0.15d + 12 Intercity Express: f = 5 + 0.20d. In parts a to c use a graph to estimate the answer. Then find the answer by writing and solving an equation or inequality. a. For Transcontinental, how many miles is a trip that costs \$99? b. For Intercity Express, how far can a person travel fro a fare that is at most \$99? c. Is there a distance for which the fare for the two bus lines is the same? If so give the distance and the fare? 	26. a. b.	Studer y = 0.1 Tracin find (5 (Note: trace f point v table f We ca manip 99 = (We ge Tracin find ay We ca 99 = 5 We ge persol miles	hts may us 15x + 12 (c g along the 580, 99). students r feature on where y is feature.) an also find pulation by 0.15d + 12 et $87 = 0.1$ and also find + 0.20d. et $94 = 0.20$ for this fare	the their calls or do this b e graph to may not be their calcu exactly 99 d the answ setting up and solvir 5d, so $d =graph of yely (470, 10the answeod, so d =el any distae.$	culators y hand). the poin able to lators re altors re rer using rer using for d . 580 mile r = 5 + 0 20). er by solv 470 mile ance UP	to graph t (?, 99) we have the ad the can use the symbol es. .20 <i>x</i> we ving s. The TO 470			

							 c. We can solve this problem two ways. Each of the above graphs shows ALL possible combinations of distance and cost for each company. So the point of intersection shows a combination that works for both companies. This (140, 33). OR we can solve this symbolically by setting up and solving the equation: 0.15<i>d</i> + 12 = 5 + 0.20<i>d</i>. 7 = 0.05<i>d</i>. <i>d</i> = 140 miles. (Check: Transcontinental would charge 0.15(140) + 12 or \$33. Intercity would charge 5 + 0.2(140) or \$33.) 					
ACE In	vestiga	ation 3										
 4 – 7. For each of the following tables, determine whether the relationship between <i>x</i> and <i>y</i> is an inverse variation. If it is, write an equation that expresses the relationship. 4. 					ermine n inver nat exp	whether se resses	 4 - 7. In every table we see that as <i>x</i> increases <i>y</i> decreases. This is ONE of the conditions for an inverse variation pattern. By itself this is not enough to identify an inverse variation. Students may also make graphs to see if the characteristic shape of an inverse variation relationship is present. For 					
Х	1	2	3	4	5	6	inverse variation the variables must fit the					
Γ Υ	10	9	8	7	6	5	equation <i>xy</i> = <i>a</i> , for some constant <i>a</i> , where <i>a</i> is					
5. V	1	2	2	1	F	6	non-zero					
Ŷ	48	24	16	12	9.6	8						
6.		<u> </u>				~	4. The rate of change of y is constant : rate = $\frac{-1}{-1}$.					
X Y	2 50	3 33	5 20	8 12.5	10 10	15 6.7	This is a linear pattern.					
7. X Y	0	1 81	2 64	3 49	4 36	5 25	5. We see that as <i>x</i> increases, <i>y</i> decreases but the rate of decrease is slowing down . This is characteristic of an inverse variation pattern. We need to check the last characteristic of inverse variation patterns: is the product of variables a constant? In this case $xy = 48$ for every pair of (<i>x</i> , <i>y</i>) values. This is an inverse variation . (If we graphed these points the characteristic curved shape of the graph of an inverse variation relation would appear.)					
							6. Since the <i>x</i> values are not changing by regular increments we cannot see easily whether the rate is constant or not. If we compare the difference in <i>x</i> on each					

	interval we will see that the rate is NOT constant, so this is not a linear relationship. Since every pair of values fits the equation xy = 100 this is also an inverse variation. (3, 33) does not fit exactly; perhaps this is a rounding error. But the point (3, 33) would lie very close to the graph of $xy = 100$, or $y = \frac{100}{x}$. 7. If we graphed these points the graph would look very like the characteristic curved shape of an inverse variation relationship, BUT there is no constant value for the product of the (x, y) values. In fact, the existence of a y-intercept should alert us to that. (0)(100) = 0. None of the other (x, y) products are zero. Note: there will be no y-intercept on the graph of an inverse variation relationship. This is because neither $x(0) = a$. nor (0) $v = a$ could have a
	Solution. $a_1 = a_2 = a_3 = a_4 = a_4 = a_5 = $
 28. Jamar takes a 10-point history quiz each week. Here are his scores on the first 5 quizzes.: 8, 9, 6, 7, 10. a. Jamar misses the next quiz and gets a 0. What is his average after 6 quizzes? b. After 20 quizzes, Jamar's average is 8. He gets a 0 on the 21st quiz. What is his average after 21 quizzes? c. Why did a score of 0 have a different effect on the average when it was the 6th score than when it was the 21st score? 	 28. a. Jamar had a total of 40 points after 5 quizzes. (An average of 8.) This total is unchanged after 6 quizzes, but now he has to divide by 6 to get his average score. Average = 40/6 = 6.7 approx. b. Jamar must have accumulated a total of 160 points over 20 quizzes to average 8 per quiz. So, with the same total over 21 quizzes the average drops to A = 160/21 = 7.6. c. Students might argue that missing a quiz is like losing a potential 10 points. Spreading a loss of up to 10 points over 21 quizzes will have less effect than spreading the loss of 10 points over 6 quizzes. That is the value of 10/n will decrease as <i>n</i> increases. 10/6 per quiz is a greater loss than 10/21 per quiz. Another way to think about this is to write an equation for the average after <i>n</i> quizzes was 8. If the

	average after $n - 1$ quizzes was 8 then the number of points is $8(n - 1)$. If this $8(n - 1)$								
	points remains unchanged because quiz is a 0, then the average after <i>n</i>						next		
							zes is		
	80	$\frac{(n-1)}{n}$	r table (e of the					
	relationship A = $\frac{8(n-1)}{n}$ show that as n								
	increases so does A, but at a slower and slower rate, and the old average of 8 is never regained.								
	n	2	3	4	5	6	7		
	A	$\frac{8}{2}$	$\frac{16}{3}$	$\frac{24}{4}$	$\frac{32}{5}$	$\frac{40}{6}$	$\frac{48}{7}$		
	We see that $\frac{48}{7} > \frac{40}{6} > \frac{32}{5}$ etc. And all of these fractions are less than 8.								