Concept	Example
Function: a relationship between 2 variables, say (x, y), so that, for any given value of x, a unique value of y can be calculated from an equation or read from a graph or a table. Linear Function: A relationship where the dependent variable changes at a constant rate in relationship to the change in the independent variable. The pattern of change can be recognized from a table or graph, and can be described using words or symbolic expressions. Non-Linear Function: A relationship where the dependent variable does not change at a constant rate. This non-constant rate will appear in the table, and will cause the graph to be a curve.	• Y = 2x and y = 5 – 0.5x are linear functions. In general y = mx + b represents a linear function. Y = 0.5x ² and y = 2 ^x are examples of non-linear functions. • Students are familiar with the pattern of a constant rate of change in y shown below. (See Moving Straight Ahead) X Y = 2x Y = 5 – 0.5x 0 0 5 1 2 4.5 2 4 4 3 6 3.5 • The two types of patterns shown below are non-linear. They are investigated further in <i>Frogs, Fleas and Painted Cubes</i> and in <i>Growing, Growing, Growing.</i> X Y = 0.5x ² Y = 2 ^x 0 0 1 1 0.5 2 2 2 4 3 4.5 8
Algebraic Expression: A combination of symbols and operations that can be evaluated if the values of the variables are given. Linear Equation : This might be an equation in 2 variables, such as $y = 2x + 3$, where y changes at a constant rate in relation to changes in x (see "function" above), or in one variable, such as $17 = 2x + 3$ (which is just a particular case of $y = 2x + 3$), or $3x - 2 = 2x + 3$. (See <i>Moving Straight</i> <i>Ahead.</i>) Solving Linear Equations: In the first case above, $y = 2x + 3$, there is an infinite number of solutions, each of which is pictured as a point on the graph of the line $y = 2x + 3$. In the other two cases there is just one value of x that makes the equal sign true. (See <i>Moving Straight Ahead.</i>) Slope : The slope of a line the ratio of vertical change to horizontal change, or (change in y) divided by (corresponding change in x). (See <i>Moving Straight Ahead.</i>)	 2x + 3 is an algebraic expression. 3x – 2 is a different expression. Notice that we are not asked to FIND a value of x for either of the expressions. We may substitute ANY values of x into these expressions to evaluate the expression. For example, if we insert x = 1, we get 5 for the value of the first expression. If we connect 2 expressions with an equal sign, we are asserting they are equal for some value(s) of the variable. For example, the linear equation 3x – 2 = 2x + 3 is only true for one value of x. One efficient way of solving this equation would be to do the same operations to both sides, using Properties of Equalities: 3x – 2 – 2x = 2x + 3 – 2x, or, x – 2 = 3. x – 2 + 2 = 3 + 2, or,

Vocabulary: Thinking With Mathematical Models

Y-Intercept : The point where the graph of a function crosses the y-axis. Since the point is on the y-axis the coordinates are (0, something). So we could say the y-intercept is the value of the dependent variable when x is 0. (See <i>Moving Straight Ahead</i> .)	x = 5 Or to use a graphical way of solving. (See <i>Moving Straight Ahead</i>)
Linear Inequality: A comparison between 2 linear expressions, such as $17 > 2x + 3$, or $3x - 2 < 2x + 3$. This time we want to find the solutions that make the inequality sign true.	The rules for solving equations (see above) apply to solving inequalities , except that when we have to multiply or divide both sides of the inequality by a negative the order is reversed. For example: • $3x - 2 < 2x + 3$ 3x - 2 - 2x < 2x + 3 - 2x (subtracting 2x from both sides) x - 2 < 3 x - 2 + 2 < 3 + 2 (adding 2 to both sides) x < 5. This means that any value lass than 5 is a solution for the original inequality. • $-3x - 5 < 4x + 2$ -3x - 5 < 4x + 2 - 4x (subtracting 4x from both sides) -7x - 5 < 2 -7x - 5 + 5 < 2 + 5 (adding 5 to both sides) -7x < 7 $\frac{-7x}{-7} > \frac{7}{-7}$ (dividing both sides by -7) (Notice that the inequality sign reversed when both sides were divided by -7. This happens because dividing (or multiplying) by a negative changes positives to negatives and vice versa, and we know that positive integers are in the OPPOSITE order from negative integers, That is, -3 < -2, but 3 > 2.)
Direct variation : A relationship between 2 variables in which an increase in one variable by a particular factor creates an increase in the other variable by the same factor. A direct variation relationship, between x and y, for example, always has the form $\mathbf{y} = \mathbf{ax}$, so this is a particular case of a linear relationship. Since this can also be written as $\frac{y}{x} = a$, we can say that in a direct	• $y = 0.6x$ shows a direct variation between x and y. As x increases, y also increases. Substituting 2 for x, we get 1.2 for y. If we double the value of x, to 4, we get double the value of y, 2.4. In every case the value of $\frac{y}{x} = 0.6$. $\frac{X}{Y} = \frac{1}{2} + \frac{2}{3} + \frac{4}{3}$

variation relationship the ratio of the variables is always a constant.	• Y = 2x + 3 would NOT be a direct variation. When x = 10, y = 23. If we double x, say x = 20, then the corresponding y value is not doubled. There is no constant value for $\frac{y}{x}$. X 1 2 3 4 Y 5 7 9 11
Inverse Variation : A relationship between 2 variables in which an increase in one variable by a particular <i>factor</i> causes a decrease in the other variable by the same <i>factor</i> . An inverse variation relationship between x and y always has the format $\mathbf{y} = \frac{a}{x}$. Since this can also be written as $\mathbf{xy} = \mathbf{a}$ we could say that in an inverse variation the product of the variables is always constant . The graph has a characteristic curved shape.	• $y = \frac{2}{x}$ shows an inverse variation between x and y. As x increases, y decreases. When x = 0.1, y = 20. If we multiply the given x value by a factor of 4, say, then the new y-value is one fourth of what it was. $y = \frac{2}{0.4} = 5$. In every case xy = 2. X = 0.1 = 0.2 = 0.3 = 0.4 Y = 20 = 10 = 6 = 5 xy = 2.
Mathematical Modeling : a process by which mathematical objects and operations can be used as approximations to real-life data patterns. We know that the mathematical model will not fit the real life example exactly, but there is enough of a pattern in the situation to make the model (which in this unit is a linear or non-linear function) fit reasonably well, and make predictions reasonable.	 Suppose we collect data about the outside temperature as a plane ascends. We would see that the temperature falls as the height increases. But we would have no way of making any accurate prediction unless we look for a pattern in the data. If we place the data in a table and look at the pattern of change, we might be able to determine if the relationship is approximately linear or not. We might also make a graph and examine the shape of the graph, to determine if the relationship is linear, or if the pattern fits some other relationship we recognize.