Focus Questions

Background

The student book is organized around three to five investigations, each of which contain three to five problems and a Mathematical Reflection that students explore during class.

In the Teacher Guide the Goals for each unit include two to four big concepts with an elaboration of the essential understandings for each.

In the Teacher Guide, a Focus Question is provided for each problem in an investigation. The Focus Question collapses the mathematical understandings and strategies embedded in the problem into one overarching question. The teacher can use the Focus Question to guide his/her instructional decisions throughout his/her planning, teaching, and reflections on student understanding.

Description

The Goals of the unit describe the mathematics content developed in the unit. The Focus Questions provide a story line for the mathematical development of an investigation. The set of Mathematical Reflections in the student book provide a story line for the mathematical development of the unit. The following contain all of the Goals, Focus Questions and Mathematical Reflections for each unit in CMP3.

Purpose

These stories can serve as an overview of the unit and as a guide for planning, teaching and assessing.

The Goals, Mathematical Reflections, and Focus Questions can be laminated and used a bookmark for the Teacher.

6-4: Covering and Surrounding

Unit Goals, Focus Questions, and Mathematical Reflections

Unit Goals

Area and Perimeter Understand that perimeter is a measure of linear units needed to surround a two-dimensional shape and that area is a measure of square units needed to cover a two-dimensional shape

- Deepen the understanding of area and perimeter of rectangular and nonrectangular shapes
- Relate area to covering a figure
- Relate perimeter to surrounding a figure
- Analyze what it means to measure area and perimeter
- Develop and use formulas for calculating area and perimeter
- Develop techniques for estimating the area and perimeter of an irregular figure
- Explore relationships between perimeter and area, including that one can vary considerably while the other stays fixed
- Visually represent relationships between perimeter and area on a graph
- Solve problems involving area and perimeter of rectangles

Area and Perimeter of Parallelograms and Triangles Understand that the linear measurements of the base, height, and slanted height of parallelograms and triangles are essential to finding the area and perimeter of these shapes

- Analyze how the area of a triangle and the area of a parallelogram are related to each other and to the area of a rectangle
- Recognize that a triangle can be thought of as half of a rectangle whose sides are equal to the base and height of the triangle
- Recognize that a parallelogram can be decomposed into two triangles. Thus the area of a parallelogram is twice the area of a triangle with the same base and height as the parallelogram
- Know that the choice of base of a triangle (or parallelogram) is arbitrary but that the choice of the base determines the height
- Recognize that there are many triangles (or parallelograms) that can be drawn with the same base and height
- Develop formulas and strategies, stated in words or symbols, for finding the area and perimeter of triangles and parallelograms
- Find the side lengths and area of polygons on a coordinate grid
- Solve problems involving area and perimeter of parallelograms and triangles
- Solve problems involving area and perimeter of polygons by composing into rectangles or decomposing into triangles

Surface Area of Prisms and Pyramids and Volume of Rectangular Prisms Understand that the surface area of a three-dimensional shape is the sum of the areas of each two-dimensional surface of the shape and that the volume of a rectangular prism is a measure in cubic units of the capacity of the prism

• Extend the understanding of the volume of rectangular prisms

2014 Connected Mathematics Project at Michigan State University © http://connectedmath.msu.edu

- Relate volume to filling a three-dimensional figure
- Extend understanding of the strategies for finding the volume of rectangular prisms to accommodate fractional side lengths
- Relate finding area of two-dimensional shapes to finding the surface area of three-dimensional objects
- Develop strategies for finding the surface area of three-dimensional objects made from rectangles and triangles
- Solve problems involving surface area of prisms and pyramids and volume of rectangular prisms

Investigation 1	Investigation 2	Investigation 3	Investigation 4
Designing Bumper Cars:	Measuring Triangles	Measuring Parallelograms	Measuring Surface Area and Volume
Extending and Building on Area and Perimeter			volume
Problem 1.1	Problem 2.1	Problem 3.1	Problem 4.1
Designing Bumper Car Rides:	Triangles on Grids: Finding Area	Parallelograms and Triangles:	Making Rectangular Boxes
Area and Perimeter	and Perimeter of Triangles	Finding Area and Perimeter of	Focus Question: What is a
Focus Question:	Focus Question: What is a	Parallelograms	strategy for finding the surface
What are the formulas for	formula for finding the area of a	Focus Question: What is a	area of a rectangular prism?
finding the area and perimeter	triangle?	strategy for finding the area of a	Explain why the strategy works.
of a rectangle? Explain why they	5	parallelogram? Explain why the	1 7 85
work.		strategy works.	
Problem 1.2	Problem 2.2	Problem 3.2	Problem 4.2
Building Storm Shelters:	More Triangles: Identifying Base	Making Families of	Filling the Boxes: Finding
Constant Area, Changing	and Height	Parallelograms: Maintaining the	Volume
Perimeter	Focus Question: Does it make	Base and the Height	Focus Question: What is a
Focus Question:	any difference which side is used	Focus Question: What can you	strategy for finding the volume
For a fixed area, what are the	as the base when finding the	say about two parallelograms	of a rectangular prism? Explain
shape and perimeter of the	area of a triangle?	that have the same base and	why the strategy works.
rectangles with the greatest and		height?	
least perimeters?			
Problem 1.3	Problem 2.3	Problem 3.3	Problem 4.3
Fencing in Spaces: Constant	Making Families of Triangles:	Designing Parallelograms Under	Designing Gift Boxes: Finding
Perimeter, Changing Area	Maintaining the Base and the	Constraints	Surface Area
Focus Question: For a fixed	Height	Focus Question:	Focus Question: What is a
perimeter, what are the shape	Focus Question: What can you	Under what conditions will two	strategy for finding the surface

Focus Questions and Mathematical Reflections

2014 Connected Mathematics Project at Michigan State University © http://connectedmath.msu.edu

and area of the rectangles the greatest and least area?	say is true and what can you say is not true about triangles that have the same base and height?	or more parallelograms have the same area? Do these parallelograms have the same shape? Explain.	area of three-dimensional object? Explain why the strategy works.
	Problem 2.4	Problem 3.4	
	Designing Triangles Under Constraints	Polygons on Coordinate Grids Focus Question: How can you	
	Focus Question: What	find the area of a polygon drawn	
	conditions for a triangle produce	on a coordinate graph? On grid	
	triangles that have the same	paper?	
	area? Do they have the same		
	shape? Explain.		
Mathematical Reflections:	Mathematical Reflections:	Mathematical Reflections:	Mathematical Reflections:
1. a. Explain what area and	1. a. Describe how to find the	1. a. Describe how to find the	1. a. What information do you
perimeter of a figure means.	area of a triangle. Explain why	area of a parallelogram. Explain	need to find the volume of a
b. Describe a strategy for finding	your method works.	why your method works.	rectangular prism? Describe a
the area and perimeter of any	b. Describe how to find the	b. Describe how to find the	strategy to find the volume of a
two-dimensional shape.	perimeter of a triangle. Explain	perimeter of a parallelogram.	rectangular prism.
c. Describe how you can find the	why your method works.	Explain why your method works.	b. What information do you need
area of a rectangle. Explain why this method works.	2. a. Does the choice of the base	2. a. Does the choice of the base	to find the surface area of a
d. Describe how you can find the	affect the area of a triangle? Does the choice of the base affect	change the area of a parallelogram? Does the choice	rectangular prism? Describe a strategy to find the surface area
perimeter of a rectangle. Explain	the perimeter of a triangle?	of the base change the perimeter	of a rectangular prism.
why this method works.	Explain why or why not?	of a parallelogram? Explain why	2. a. Describe a strategy for
2. a. Consider all the rectangles	b. What can you say about the	or why not?	finding the surface area of three-
with the same area. Describe the	area and perimeter of two	b. What can you say about the	dimensional shapes made from
rectangle with the least	triangles that have the same	shape, area, and perimeter of	rectangles and triangles.
perimeter. Describe the	base and height? Give evidence	two parallelograms that have the	b. How does knowing the area of
rectangle with the greatest	to support your answer?	same base and height? Give	two-dimensional figures help
perimeter.	3. How is finding the area of a	evidence to support your	you find the surface area of a
b. Consider all the rectangles	triangle related to finding the	answer?	three-dimensional shape?

2014 Connected Mathematics Project at Michigan State University © http://connectedmath.msu.edu

with the same perimeter.	area of a rectangle? How is	3. How is the area of a	
Describe the rectangle with the	finding the perimeter of a	parallelogram related to the area	
least area. Describe the rectangle	triangle related to finding the	of a triangle and a rectangle?	
with the greatest area.	perimeter of a rectangle?	How is the perimeter of a	
c. Explain how graphing		parallelogram related to the	
relationships between length		perimeter of a triangle and a	
and perimeter or length and		rectangle?	
area helps explain patterns			
between area and perimeter.			