Focus Questions

Background

The student book is organized around three to five investigations, each of which contain three to five problems and a Mathematical Reflection that students explore during class.

In the Teacher Guide the Goals for each unit include two to four big concepts with an elaboration of the essential understandings for each.

In the Teacher Guide, a Focus Question is provided for each problem in an investigation. The Focus Question collapses the mathematical understandings and strategies embedded in the problem into one overarching question. The teacher can use the Focus Question to guide his/her instructional decisions throughout his/her planning, teaching, and reflections on student understanding.

Description

The Goals of the unit describe the mathematics content developed in the unit. The Focus Questions provide a story line for the mathematical development of an investigation. The set of Mathematical Reflections in the student book provide a story line for the mathematical development of the unit. The following contain all of the Goals, Focus Questions and Mathematical Reflections for each unit in CMP3.

Purpose

These stories can serve as an overview of the unit and as a guide for planning, teaching and assessing.
The Goals, Mathematical Reflections, and Focus Questions can be laminated and used a bookmark for the Teacher.

7-3: Stretching and Shrinking

Unit Goals, Focus Questions, and Mathematical Reflections

Unit Goals

Similar Figures Understand what it means for figures to be similar
Identify similar figures by comparing corresponding sides and angles
Use scale factors and ratios to describe relationships among the side lengths, perimeters, and areas of similar figures Generalize properties of similar figures
Recognize the role multiplication plays in similarity relationships
Recognize the relationship between scale factor and ratio in similar figures
Use informal methods, scale factors, and geometric tools to construct similar figures (scale drawings)
Compare similar figures with nonsimilar figures
Distinguish algebraic rules that produce similar figures from those that produce nonsimilar figures
Use algebraic rules to produce similar figures
Recognize when a rule shrinks or enlarges a figure
Explore the effect on the image of a figure if a number is added to the x - or y-coordinates of the figure's vertices
Reasoning with Similar Figures Develop strategies for using similar figures to solve problems
Use the properties of similarity to find distances and heights that cannot be measured directly
Predict the ways that stretching or shrinking a figure will affect side lengths, angle measures, perimeters, and areas
Use scale factors or ratios to find missing side lengths in a pair of similar figures
Use similarity to solve real-world problems

Focus Questions and Mathematical Reflections

Investigation 1 Enlarging and Reducing Shapes	Investigation 2 Similar Figures	Investigation 3 Scaling Perimeter and Area	Investigation 4 Similarity and Rations
Problem 1.1 Solving a Mystery: An Introduction to Similarity	Problem 2.1 Drawing Wumps: Making Similar Figures	Problem 3.1 Rep-Tile Quadrilaterals: Forming RepTiles With Similar Quadrilaterals	Problem 4.1 Ratios Within Similar Parallelograms
Focus Question What does it mean for two figures to be similar?	Focus Question How can you determine if two shapes are similar by looking at the rule for producing specific coordinates for the image?	Focus Question What types of quadrilaterals are rep-tiles? How do rep-tiles show that the scale factors and areas of similar quadrilaterals are related?	Focus Question What information does the ratio of adjacent side lengths within a rectangle give you?
Problem 1.2 Scaling Up and Down: Corresponding Sides and Angles	Problem 2.2 Hats Off to the Wumps: Changing a Figure's Size and Location	Problem 3.2 Rep-Tile Triangles: Forming Rep-Tiles With Similar Figures	Problem 4.2 Ratios Within Similar Triangles
Focus Question When you copy a figure at a certain scale factor (e.g. 150\%), how does this value affect the measurements of the new figure?	Focus Question What types of coordinate rules produce similar figures? Nonsimilar figures? For a pair of similar figures, how can you use a coordinate rule to predict the side lengths of the image?	Focus Question Which types of triangles are rep-tiles? Explain.	Focus Question For a pair of triangles, if the measures of corresponding angles are equal, how can you use ratios of side lengths to determine whether or not the triangles are similar?
	Problem 2.3 Mouthing Off and Nosing Around: Scale Factors	Problem 3.3 Designing Under Constraints: Scale Factors and Similar Shapes	Problem 4.3 Finding Missing Parts: Using Similarity to Find Measurements
	Focus Question How can you decide whether or not two shapes are similar?	Focus Question How can you use scale factors to draw similar figures or to find missing side lengths in similar	Focus Question If two shapes are similar, how can you use information about the shapes to find unknown side lengths,

		figures?	perimeters, and areas?
		Problem 3.4 Out of Reach: Finding Lengths with Similar Triangles	Problem 4.4 Using Shadows to Find Heights: Using Similar Triangles
		Focus Question How can you use similar triangles to find a distance that is difficult to measure directly?	Focus Question How can you use similar triangles to estimate the heights of tall objects?

[^0]

[^0]: 2014 Connected Mathematics Project at Michigan State University © http://connectedmath.msu.edu

