Focus Questions

Background

The student book is organized around three to five investigations, each of which contain three to five problems and a Mathematical Reflection that students explore during class.

In the Teacher Guide the Goals for each unit include two to four big concepts with an elaboration of the essential understandings for each.

In the Teacher Guide, a Focus Question is provided for each problem in an investigation. The Focus Question collapses the mathematical understandings and strategies embedded in the problem into one overarching question. The teacher can use the Focus Question to guide his/her instructional decisions throughout his/her planning, teaching, and reflections on student understanding.

Description

The Goals of the unit describe the mathematics content developed in the unit. The Focus Questions provide a story line for the mathematical development of an investigation. The set of Mathematical Reflections in the student book provide a story line for the mathematical development of the unit. The following contain all of the Goals, Focus Questions and Mathematical Reflections for each unit in CMP3.

Purpose

These stories can serve as an overview of the unit and as a guide for planning, teaching and assessing.

The Goals, Mathematical Reflections, and Focus Questions can be laminated and used a bookmark for the Teacher.

7-3: Stretching and Shrinking

Unit Goals, Focus Questions, and Mathematical Reflections

Unit Goals

Similar Figures Understand what it means for figures to be similar

 Identify similar figures by comparing corresponding sides and angles
 Use scale factors and ratios to describe relationships among the side lengths, perimeters, and areas of similar figures
 Generalize properties of similar figures
 Recognize the role multiplication plays in similarity relationships
 Recognize the relationship between scale factor and ratio in similar figures
 Use informal methods, scale factors, and geometric tools to construct similar figures (scale drawings)
 Compare similar figures with nonsimilar figures
 Distinguish algebraic rules that produce similar figures from those that produce nonsimilar figures
 Use algebraic rules to produce similar figures
 Recognize when a rule shrinks or enlarges a figure
 Explore the effect on the image of a figure if a number is added to the *x*- or *y*-coordinates of the figure's vertices

 Reasoning with Similar Figures Develop strategies for using similar figures to solve problems

 Use the properties of similarity to find distances and heights that cannot be measured directly.

Use the properties of similarity to find distances and heights that cannot be measured directly Predict the ways that stretching or shrinking a figure will affect side lengths, angle measures, perimeters, and areas Use scale factors or ratios to find missing side lengths in a pair of similar figures Use similarity to solve real-world problems

Focus Questions and Mathematical Reflections

Investigation 1	Investigation 2	Investigation 3	Investigation 4
Enlarging and Reducing Shapes	Similar Figures	Scaling Perimeter and Area	Similarity and Rations
Problem 1.1 Solving a Mystery: An Introduction to Similarity	Problem 2.1 Drawing Wumps: Making Similar Figures	Problem 3.1 Rep-Tile Quadrilaterals: Forming Rep- Tiles With Similar Quadrilaterals	Problem 4.1 Ratios Within Similar Parallelograms
Focus Question What does it mean for two figures to be similar?	Focus Question How can you determine if two shapes are similar by looking at the rule for producing specific coordinates for the image?	Focus Question What types of quadrilaterals are rep-tiles? How do rep-tiles show that the scale factors and areas of similar quadrilaterals are related?	Focus Question What information does the ratio of adjacent side lengths within a rectangle give you?
Problem 1.2 Scaling Up and Down: Corresponding Sides and Angles	Problem 2.2 Hats Off to the Wumps: Changing a Figure's Size and Location	Problem 3.2 Rep-Tile Triangles: Forming Rep-Tiles With Similar Figures	Problem 4.2 Ratios Within Similar Triangles
Focus Question When you copy a figure at a certain scale factor (e.g. 150%), how does this value affect the measurements of the new figure?	Focus Question What types of coordinate rules produce similar figures? Nonsimilar figures? For a pair of similar figures, how can you use a coordinate rule to predict the side lengths of the image?	Focus Question Which types of triangles are rep-tiles? Explain.	Focus Question For a pair of triangles, if the measures of corresponding angles are equal, how can you use ratios of side lengths to determine whether or not the triangles are similar?
	Problem 2.3 Mouthing Off and Nosing Around: Scale Factors	Problem 3.3 Designing Under Constraints: Scale Factors and Similar Shapes	Problem 4.3 Finding Missing Parts: Using Similarity to Find Measurements
	Focus Question How can you decide whether or not two shapes are similar?	Focus Question How can you use scale factors to draw similar figures or to find missing side lengths in similar	Focus Question If two shapes are similar, how can you use information about the shapes to find unknown side lengths,

2014 Connected Mathematics Project at Michigan State University © http://connectedmath.msu.edu

		figures?	perimeters, and areas?
		Problem 3.4 Out of Reach:	Problem 4.4 Using Shadows
		Finding Lengths with Similar	to Find Heights: Using Similar
		Triangles	Triangles
		Focus Question How can you	Focus Question How can you
		use similar triangles to find a	use similar triangles to
		distance that is difficult to	estimate the heights of tall
		measure directly?	objects?
Mathematical Reflection	Mathematical Reflection	Mathematical Reflection	Mathematical Reflection
1. a. When you enlarge or	1. If two shapes are similar,	1. a. If two polygons are	1. If two triangles,
reduce a figure, what	what is the same about	similar, how can find the	rectangles, or
features stay the same?	them and what is	scale factor from one	parallelograms are
b. When you enlarge or	different?	polygon to the other? Give	similar,
reduce a figure, what	2. a. What does the scale	specific examples.	a. How does the ratio of
features change?	factor tell you about two	b. Suppose you are given a	two side lengths within
2. Rubber-band stretchers,	similar figures?	polygon. How can you	one figure compare to the
copy machines, and	b. How does the	draw a similar figure?	ratio of the corresponding
projectors all make images	coordinate rule for making	2. What does the scale factor	side lengths in the other
that are similar to the	two similar shapes relate	between two similar	figure?
original shapes. What does	to the scale factor?	figures tell you about the	b. What does the scale
it mean for two shapes to	3. Rubber band stretchers,	a. side lengths?	factor from one figure to
be similar? Complete the	copy machines, and	b. perimeters?	the other tell you about
sentence below:	coordinate grids all made	c. areas?	the figures?
"Two geometric shapes are	images that are similar to	d. angles?	2. a. Describe at least two
similar when"	(or scale drawings of) the	3. If two figures are similar,	ways to find a missing
	original shapes. What does	how can you find a missing	side length in a pair of
	it mean to say two shapes	side length?	similar figures.
	are similar? Build on your	4. Describe how you can find	b. How can you find the
	statement from	the measure of a distance	height of an object that
	Mathematical Reflection 1:	that you cannot measure	cannot be measured
	"Two geometric shapes are	directly.	directly?
	similar when"	5. What does it mean to say	3. What does it mean to say
		two shapes are similar?	that two shapes are
		After completing	similar? After exploring

2014 Connected Mathematics Project at Michigan State University © http://connectedmath.msu.edu

Investigation 3, how can you build on your statements from Mathematical Reflections 1 and 2? <i>"Two geometric shapes are</i>	with ratios, build on your statements from Mathematical Reflections 1, 3, and 3: <i>"Two geometric shapes are similar when…"</i>
"Two geometric shapes are similar when"	similar when"