## 7-5: Moving Straight Ahead

Unit Goals, Focus Questions, and Mathematical Reflections

## Unit Goals

Linear Relationships Recognize problem situations in which two variables have a linear relationship

- Identify and describe the patterns of change between the independent and dependent variables for linear relationships represented by tables, graphs, equations, or contextual settings
- Construct tables, graphs, and symbolic equations that represent linear relationships
- Identify the rate of change between two variables and the $x$ - and $y$-intercepts from graphs, tables, and equations that represent linear relationships
- Translate information about linear relationships given in a contextual setting, a table, a graph, or an equation to one of the other forms
- Write equations that represent linear relationships given specific pieces of information, and describe what information the variables and numbers represent
- Make a connection between slope as a ratio of vertical distance to horizontal distance between two points on a line and the rate of change between two variables that have a linear relationship
- Recognize that $y=m x$ represents a proportional relationship
- Solve problems and make decisions about linear relationships using information given in tables, graphs, and equations


## Equivalence Understand that the equality sign indicates that two expressions are equivalent

- Recognize that the equation $y=m x+b$ represents a linear relationship and means that $m x+b$ is an expression equivalent to $y$
- Recognize that linear equations in one unknown, $k=m x+b$ or $y=m(t)+b$, where $k, t, m$, and $b$ are constant numbers, are special cases of the equation $y=m x+b$
- Recognize that finding the missing value of one of the variables in a linear relationship, $y=m x+b$, is the same as finding a missing coordinate of a point $(x, y)$ that lies on the graph of the relationship
- Solve linear equations in one variable using symbolic methods, tables, and graphs
- Recognize that a linear inequality in one unknown is associated with a linear equation
- Solve linear inequalities using graphs or symbolic reasoning
- Show that two expressions are equivalent
- Write and interpret equivalent expressions


## 7-5 Moving Straight Ahead: Focus Questions (FQ) and Mathematical Reflections

## Investigation 1 <br> Walking Rates

## Problem 1.1

Walking Marathons: Finding and Using Rates
FQ: What equation represents the relationship between the time and the distance you walk at a constant rate? What are the dependent and independent variables?

## Problem 1.2

## Walking Rates and Linear Relationships: Tables

 Graphs, and EquationsFQ: How can you predict whether a relationship is linear from a table, a graph, or an equation that represents the relationship?

Problem 1.3
Raising Money: Using Linear Relationships
FQ: What is the pattern of change in a linear relationship?

Problem 1.4
Using the Walkathon Money: Recognizing Linear Relationships
FQ: How can you determine if a linear relationship is increasing or decreasing?

## Mathematical Reflections

1. Describe how the dependent variable changes as the independent variable changes in a linear relationship. Give examples.
2. How does the pattern of change between two variables in a linear relationship show up in 2a. a contextual situation?
2 b . a table?
2c. a graph?
2d. an equation?

## Investigation 2

Exploring Linear Relationships with Graphs and Tables

## Problem 2.1

Henri and Emile's Race: Finding the Point of Intersection
FQ: When is it helpful to use a graph or table to solve a problem?

## Problem 2.2

Crossing the Line: Using Tables, Graphs, and Equations
FQ: How does the pattern of change for a linear relationship appear in a table, a graph, or an equation?

## Problem 2.3

Comparing Costs: Comparing Relationships FQ: How can you decide if a table or an equation represents a linear relationship?

## Problem 2.4

Connecting Tables, Graphs, and Equations FQ: How are solutions of an equation of the form $y=b+m x$ related to the graph and the table for the same relationship?

Mathematical Reflections
1a. Explain how the information about a linear relationship is represented in a table, a graph, or an equation.
1b. Describe several real-world situations that can be modeled by equations of the form $y=$ $m x+b$ and $y=m x$. Explain how the latter equation represents a proportional relationship.

2a. Explain how a table or graph that represent a linear relationship can be used to solve a problem.
2b. Explain how you have used an equation that represents a linear relationship to solve a problem.

## Investigation 3 <br> Solving Equations

## Problem 3.1

Solving Equations Using Tables and Graphs
FQ: How are the coordinates of a point on a line or in a table related to the equation of the line?

## Problem 3.2

Mystery Pouches in the Kingdom of Montarek: Exploring Equality
FQ: What does equality mean?

## Problem 3.3

From Pouches to Variables: Writing Equations
FQ: How can the properties of equality be used to solve linear equations?

## Problem 3.4

Solving Linear Equations
FQ: What are some strategies for solving linear equations?

## Problem 3.5

Finding the Point of Intersection: Equations and Inequalities
FQ: How can you find when two expressions are equal, or when one expression is greater or less than the other?

Mathematical Reflections
1a. Suppose that, in an equation with two variables, you know the value of one of the variables. Describe a method for finding the value of the other variable using the properties of equality. Give an example to illustrate your method. 1b. Compare the method you described in part (a) to the methods of using a table or a graph to solve linear equations.

2a. Explain how an inequality can be solved by methods similar to those used to solve linear equations.
2b. Describe a method for finding the solution to an inequality using graphs.
3. Give an example of two equivalent expressions that were used in this investigation. Explain why they are equivalent.

Investigation 4
Exploring Slope: Connecting Rates and Ratios

## Problem 4.1

Climbing Stairs: Using Rise and Run
FQ: How is the steepness of a set of stairs related to a straight-line graph?

## Problem 4.2

Finding the Slope of a Line
FQ: How can you find the y-intercept and the slope of a line from data in a table, graph, or equation?

## Problem 4.3

Exploring Patterns with Lines
FQ: How can you predict if two lines are parallel or perpendicular from their equations?

## Problem 4.4

Pulling it All Together: Writing Equations for Linear Relationships
FQ: What information do you need to write an equation for a linear relationship? Is the expression for the dependent variable always the same?

## Mathematical Reflections

1. Explain what the slope of a line is. How does finding the slope compare to finding the rate of change between two variables in a linear relationship?
2. How can you find the slope of a line from

2a. an equation?
2b. a graph?
2c. a table of values of the line?
2d. the coordinates of two points on the line?
3. For parts (a) and (b), explain how you can write an equation of a line from the information. Use examples to illustrate your thinking.
3a. the slope and the $y$-intercept of the line
3b. two points on the line

