Focus Questions

Background

The student book is organized around three to five investigations, each of which contain three to five problems and a Mathematical Reflection that students explore during class.

In the Teacher Guide the Goals for each unit include two to four big concepts with an elaboration of the essential understandings for each.

In the Teacher Guide, a Focus Question is provided for each problem in an investigation. The Focus Question collapses the mathematical understandings and strategies embedded in the problem into one overarching question. The teacher can use the Focus Question to guide his/her instructional decisions throughout his/her planning, teaching, and reflections on student understanding.

Description

The Goals of the unit describe the mathematics content developed in the unit. The Focus Questions provide a story line for the mathematical development of an investigation. The set of Mathematical Reflections in the student book provide a story line for the mathematical development of the unit. The following contain all of the Goals, Focus Questions and Mathematical Reflections for each unit in CMP3.

Purpose

These stories can serve as an overview of the unit and as a guide for planning, teaching and assessing.

The Goals, Mathematical Reflections, and Focus Questions can be laminated and used a bookmark for the Teacher.

7-7: Filling and Wrapping

Unit Goals, Focus Questions, and Mathematical Reflections

Unit Goals

Surface Areas and Volumes of Polygonal Prisms and Cylinders Understand surface areas and volumes of prisms and cylinders and how they are related

- Describe prisms by using their vertices, faces, and edges
- Visualize three-dimensional shapes and the effects of slicing those shapes by planes
- Deepen understanding of volumes and surface areas of rectangular prisms
- Estimate and calculate surface areas and volumes of polygonal prisms by relating them to rectangular prisms
- Explore the relationships between the surface areas and volumes of prisms
- Relate surface areas and volumes for common figures, especially optimization of surface area for fixed volume
- Predict the effects of scaling dimensions on linear, surface area, and volume measures of prisms, cylinders, and other figures
- Investigate the relationship between volumes of prisms and volumes of cylinders as well as the relationship between surface areas of prisms and surface areas of cylinders
- Use volumes and surface areas of prisms to develop formulas for volumes and surface areas of cylinders
- Discover that volumes of prisms and cylinders can be calculated as the product of the area of the base and the height
- Solve problems involving surface areas and volumes of solid figures

Areas and Circumferences of Circles Understand the areas and circumferences of circles and how they are related

- Relate area of a circle to covering a figure and circumference to surrounding a figure
- Estimate and calculate areas and circumferences of circles
- Explore the relationship between circle radius (or diameter) and circumference
- Explore the relationship between circle radius (or diameter) and area
- Investigate the connection of π to area calculation by estimating the number of radius squares needed to cover a circle
- Investigate the relationship between area and circumference of a circle
- Solve problems involving areas and circumferences of circles

Volumes of Spheres and Cones Understand the relationships between the volumes of cylinders and the volumes of cones and spheres

- Relate volumes of cylinders to volumes of cones and spheres
- Estimate and calculate volumes of spheres and cones
- Solve problems involving surface areas and volumes of spheres and cones

Investigation 1 Building Smart Boxes:	Investigation 2 Polygonal Prisms	Investigation 3 Area and Circumference of	Investigation 4 Cylinders, Cones, and Spheres
Rectangular Prisms		Circles	
Problem 1.1	Problem 2.1	Problem 3.1	Problem 4.1
How Big Are Those Boxes?	Folding Paper: Surface Area and	Going Around in Circles:	Networking: Surface Area of
Finding Volume	Volume of Prisms	Circumference	Cylinders
Focus Question: How do you	Focus Question: For a prism	Focus Question: What is the	Focus Question: How can you
calculate the surface area and	with fixed height and fixed	relationship between the	calculate the surface area of a
volume of a rectangular prism?	lateral area, how do the volume	diameter or radius of a circle	cylinder? Why does that strategy
	and surface area of the prism	and its circumference?	work?
	change as the number of sides		
	increases?		
Problem 1.2	Problem 2.2	Problem 3.2	Problem 4.2
Optimal Containers I: Finding	Packing a Prism: Calculating	Pricing Pizza: Connecting Area,	Wrapping Paper: Volume of
Surface Area	Volume of Prisms	Diameter, and Radius	Cylinders
Focus Question: Suppose you	Focus Question: What general	Focus Question: How does the	Focus Question: How can you
design a box in the shape of a	strategy can be used to find the	area of a circle increase as the	calculate the volume of a
rectangular prism with a volume	volume of any prism—	circle's radius and diameter	cylinder? How is the procedure
of 24 cm ³ . What are the shape	triangular, rectangular,	increase?	similar to calculating the volume
and dimensions of the box that	pentagonal, and so on?		of a prism?
has minimum surface area?			
Problem 1.3	Problem 2.3	Problem 3.3	Problem 4.3
Optimal Containers II: Finding	Slicing Prisms and Pyramids	Squaring a Circle to Find is Area	Comparing Juice Containers:
the Least Surface Area	Focus Question: What surface	Focus Question: What is the	Comparing Surface Areas
Focus Question: What are the	shapes and three-dimensional	relationship between the area of	Focus Question: How does the
dimensions of the rectangular	figures can be created by slicing	a circle and its radius?	surface area of a cylinder
prism that has the least surface	a rectangular prism in various		compare to the surface area of a

Focus Questions and Mathematical Reflections

2014 Connected Mathematics Project at Michigan State University © http://connectedmath.msu.edu

area for a given volume?	directions?		rectangular prism for a given
Problem 1 4		Problem 3.4	Problem 4.4
Compost Containers: Scaling IIn		Connecting Circumference and	Filling Cones and Spheres
Prisms		Area	Focus Question: If a sphere and
Focus Question: As you change		Focus Question: What is the	a cone have the same
the dimensions of a rectangular		relationship between the	dimensions as a cylinder how do
nrism by a certain scale factor		circumference and area of a	the volumes compare? What
how do the surface area and		circle?	formulas for volume of a sphere
volume of the prism change?			and the volume of a cone can
volume of the prism change:			you write using these
			rolationshins?
			Problem 4 5
			Comparing Volumos of Sphoros
			Culindars, and Conos
			Excus Question: What are some
			rolationshing you can use
			involving a cono a sphore and a
			sylinder with the same
			dimonsions?
Mathematical Deflections:	Mathematical Deflections:	Mathematical Deflections:	Mathematical Deflections:
1 How can you calculate the	1 How can you find the surface	1 How can you find the	1 a Compare the task of finding
1. How call you calculate the	1. How call you find the surface	1. How call you find the	the given pare the task of finding
volume and surface area of a	area of any fight prisin: Explain	circuillel elice allu al ea ol a	and the surface area of a
monoguros of its longth width	2 How can you find the volume	radius or diameter?	allu tile sullace allea of a
and height? Evplain why this	2. How call you find the volume	2 How is the shallongs of finding	cylinder to that of infung the
	Vour method works	2. How is the chanelige of minung	surface area a pricm
2 How are the surface area and	2 What two, and three	circles similar to that of finding	b Compare the task of finding
2. How are the surface area and	dimonsional shapes result when	norimotors and areas of	b. Compare the task of multiple
volume of a rectangular prism	a right restangular prism is gut	perimeters and areas of	finding the volume of prisms
2 How will the surface area and	hu	polygons such as triangles,	a How can you find the
5. How will the surface area and	Dy	nerallelegrame? In what wave	c. How call you find the
volume of a prism change m	a. a norrigal alige?	parallelograms: In what ways	circumierence of the base, the
each of the following cases?	D. a vertical since:		surface area, and the volume of a
a. rou increase or reduce one	c. a sianteu siice?		cymuer from measures of its
aimension by a scale factor of f.			radius or diameter and its

2014 Connected Mathematics Project at Michigan State University © http://connectedmath.msu.edu

b. You increase or reduce two		height? Explain why your
dimensions by a scale factor of <i>f</i> .		formulas make sense.
c. You increase or reduce all		d. How do the surface area and
three dimensions by a scale		the volume of a cylinder change
factor of <i>f</i> .		if both the radius and height are
		changed by a factor of <i>f</i> ?
		2. a. How is the task of finding
		the volumes of spheres and
		cones similar to that of finding
		the volumes of prisms and
		cylinders? In what ways are
		those tasks different?
		b. How can you find the volume
		of a sphere or a cone from
		measures of its dimensions?