Focus Questions

Background

The student book is organized around three to five investigations, each of which contain three to five problems and a Mathematical Reflection that students explore during class.

In the Teacher Guide the Goals for each unit include two to four big concepts with an elaboration of the essential understandings for each.

In the Teacher Guide, a Focus Question is provided for each problem in an investigation. The Focus Question collapses the mathematical understandings and strategies embedded in the problem into one overarching question. The teacher can use the Focus Question to guide his/her instructional decisions throughout his/her planning, teaching, and reflections on student understanding.

Description

The Goals of the unit describe the mathematics content developed in the unit. The Focus Questions provide a story line for the mathematical development of an investigation. The set of Mathematical Reflections in the student book provide a story line for the mathematical development of the unit. The following contain all of the Goals, Focus Questions and Mathematical Reflections for each unit in CMP3.

Purpose

These stories can serve as an overview of the unit and as a guide for planning, teaching and assessing.

The Goals, Mathematical Reflections, and Focus Questions can be laminated and used a bookmark for the Teacher.

8-5: Butterflies, Pinwheels, and Wallpaper

Unit Goals, Focus Questions, and Mathematical Reflections

Unit Goals

Transformations Describe types of transformations that relate points by the motions of reflections, rotations, and translations, and describe methods for identifying and creating symmetric plane figures

Recognize properties of reflection, rotation, and translation transformations

Explore techniques for using rigid motion transformations to create symmetric designs

Use coordinate rules for basic rigid motion transformations

Congruence and Similarity Understand congruence and similarity and explore necessary and sufficient conditions for establishing congruent and similar shapes

Recognize that two figures are congruent if one is derived from the other by a sequence of reflection, rotation, and/or translation transformations

Recognize that two figures are similar if one can be obtained from the other by a sequence of reflections, rotations, translations, and/or dilations

Use transformations to describe a sequence that exhibits the congruence between figures

Use transformations to explore minimum measurement conditions for establishing congruence of triangles

Use transformations to explore minimum measurement conditions for establishing similarity of triangles

Relate properties of angles formed by parallel lines and transversals, and the angle sum in any triangle, to properties of transformations Use properties of congruent and similar triangles to solve problems about shapes and measurements

Focus Questions and Mathematical Reflections

Investigation 1	Investigation 2	Investigation 3	Investigation 4
Symmetry and Transformations	Transformations and Congruence	Transforming Coordinates	Dilations and Similar Figures
Problem 1.1 Butterfly	Problem 2.1 Connecting	Problem 3.1 Flipping on a	Problem 4.1 Focus on

2014 Connected Mathematics Project at Michigan State University © http://connectedmath.msu.edu

Symmetry: Line Reflections	Congruent Polygons	Grid: Coordinate Rules for	Dilations
		Reflections	
Focus Question What does it	Focus Question What does it		Focus Question What
mean to say that a figure has	mean to say two geometric	Focus Question How can you	coordinate rules model
reflection or flip symmetry?	shapes are congruent to each	describe the 'motions' of points	dilations and how do dilations
How is each point related to its	other and how could you	under reflections with	change or preserve
image under transformation by	demonstrate congruence with	coordinate rules in the form	characteristics of the original
reflection in a line?	movable copies of the figures?	$(x,y) \rightarrow (,)$ tells how to 'move'	figure?
		any point to its image under a	
		translation?	
Problem 1.2 In a Spin:	Problem 2.2 Supporting the	Problem 3.2 Sliding on a	Problem 4.2 Return of Super
Rotations	World: Congruent Triangles I	Grid: Coordinate Rules for	Sleuth: Similarity
		Translations	Transformations
Focus Question What does it	Focus Question How much		
mean to say that a figure has	information do you need to	Focus Question What kind of	Focus Questions How can you
rotation or turn symmetry?	decide that two triangles are	coordinate rule $(x,y) \rightarrow (,)$	use transformations to check
How is each point related to its	probably congruent or not	tells how to 'move any point to	whether two figures are similar
image under transformation by	congruent? How do you go	its image under a translation?	or not?
rotation?	about planning		
	transformations that 'move'		
	one triangle onto another?		
Problem 1.3 Sliding Around:	Problem 2.3 Minimum	Problem 3.3 Spinning on a	Problem 4.3 Checking
Translations	Measurement: Congruent	Grid: Coordinate Rules for	Similarity Without
	Triangles II	Rotations	Transformations
Focus Question What does it			
mean to say that a figure has	Focus Question What is the	Focus Question What are the	Focus Question What
translation or slide symmetry?	smallest number of side and	coordinate rules that describe	information about the sides
How is each point related to its	angle measurements that will	'motion' of points on a grid	and angles of two triangles will
image under transformation by	allow you to conclude that two	under turns of 90° and 180°?	guarantee that they are
translation?	triangles are congruent?		similar?
Problem 1.4 Properties of		Problem 3.4 A Special	Problem 4.4 Using Similar
Transformations		Property of Translations and	Triangles
		Half-Turns	
Focus Question How, if at all,			Focus Question What facts
will the shape, size, and		Focus Question How are lines	about similar triangles allow

2014 Connected Mathematics Project at Michigan State University © http://connectedmath.msu.edu

position of a geometric figure change after each of the transformations studied in this investigation – flip, turn, or		and their images under translations and half-turns related to each other?	you to find lengths in very large figures even when they can't be reached to measure?
slide?		Ducklass 2 5 Devellet Lives	
		Problem 3.5 Parallel Lines, Transversals and Angle	
		Sums	
		Focus Question When two	
		parallel lines are cut by a	
		transversal, what can be said	
		about the angles formed? What	
		is always true about the angle	
		measures in a triangle? How do	
		you know that your answers	
Mathematical Deflection	Mathematical Deflection	are correct?	Mathematical Deflection
Mathematical Reflection	Mathematical Reflection	Mathematical Reflection	Mathematical Reflection
1. How would you explain to	1. How can you find a sequence	1. What are the general forms	1. How would you explain what
someone how to make a	of flips, turns, and slides to	of the coordinate rules for	it means for two geometric
design with:	"move" one figure exactly	these transformations?	shapes to be similar using
a. reflectional symmetry?	onto another to show that	a. reflection in the y-axis	a. everyday words that
b. rotational symmetry?	they are congruent?	b. refection in the x-axis	most people could
c. translational symmetry?		c. counterclockwise rotation	understand?
	2. What information about the	of 90° about the origin	b. technical terms of
2. How are points and their	sides and angles of two	d. counterclockwise rotation	mathematics?
images related by each of	triangles will guarantee you	of 180° about the origin	
these geometric	can "move" one triangle	e. translation that "moves"	2.
transformations?	onto the other?	points a units	a. Suppose you dilate a
a. reflection in line m		horizontally and b units	polygon to form a figure
b. rotation of d° about	3. How could you convince	vertically	of a different size. How
point P	someone that two given		will the side lengths,
c. translation with distance	triangles are not congruent?	2. what is the effect of	angle measures,
and direction set by		translation and half-turns on	perimeters, areas, and

2014 Connected Mathematics Project at Michigan State University © http://connectedmath.msu.edu

the segment from	lines?	slopes of the sides of the
point X to point X'.		two figures be alike?
	3. How has your knowledge of	How will they be
3. How do reflections,	transformations changed or	different?
rotations, and translations	extended what you already	b. How has your knowledge
change the size and shape	knew about the angles	of dilations changed or
of line segments, angles,	formed by two parallel lines	extended what you
and/or polygons, if at all?	and a transversal?	already knew about
		similarity.
	4. How has your knowledge of	
	transformations changed or	3. What is the least amount of
	extended what you already	information you need in
	knew about the sum of the	order to be sure that two
	angle measures of a	triangles are similar?
	triangle?	
		4. How do you use similarity to
		find the side lengths of
		similar figures?