CONNECTED MATHEMATICS PROJECT

8-5: Butterflies, Pinwheels, and Wallpaper

Unit Goals, Focus Questions, and Mathematical Reflections

Unit Goals

Transformations Describe types of transformations that relate points by the motions of Reflections, rotations, and translations, and describe methods for identifying and creating symmetric plane figures

- Recognize properties of Reflections, rotation, and translation transformations
- Explore techniques for using rigid motion transformations to create symmetric designs
- Use coordinate rules for basic rigid motion transformations

Congruence and Similarity Understand congruence and similarity and explore necessary and sufficient conditions for establishing congruent and similar shapes

- Recognize that two figures are congruent if one is derived from the other by a sequence of Reflections, rotation, and/or translation transformations
- Recognize that two figures are similar if one can be obtained from the other by a sequence of Reflections, rotations, translations, and/or dilations
- Use transformations to describe a sequence that exhibits the congruence between figures
- Use transformations to explore minimum measurement conditions for establishing congruence of triangles
- Use transformations to explore minimum measurement conditions for establishing similarity of triangles
- Relate properties of angles formed by parallel lines and transversals, and the angle sum in any triangle, to properties of transformations
- Use properties of congruent and similar triangles to solve problems about shapes and measurements

CONNECTED MATHEMATICS PROJECT

8-5 Butterflies, Pinwheels and Wallpaper: Focus Questions (FQ) and Mathematical Reflections

Investigation 1	Investigation 2	Investigation 3	Investigation 4
Symmetry and Transformations	Transformations and Congruence	Transforming Coordinates	Dilations and Similar Figures
Problem 1.1 Butterfly Symmetry: Line Reflections FQ: What does it mean to say that a figure has flip or reflectional symmetry? How is each point related to its image under transformation by reflection is o line?	Problem 2.1 Connecting Congruent Polygons FQ: What does it mean to say two geometric shapes are congruent to each other and how could you demonstrate	Problem 3.1Flipping on a Grid: Coordinate Rules for ReflectionsFQ: How can you describe how points "move" under a reflection with coordinate rules in the form $(x,y) \rightarrow (\Box, \Box)$ when the reflection line is (1) the x-axis? (2) the y-axis? (3) the line y=x?	Problem 4.1 Focus on Dilations FQ: What coordinate rules model dilations and how do dilations change or preserve characteristics of the original figure?
Problem 1.2 In a Spin: Rotations FQ: What does it mean to say that a figure has turn or rotation symmetry? How is each point related to its image under	Figures? Problem 2.2 Supporting the World: Congruent Triangles I FQ: How much information do you need to	Problem 3.2 Sliding on a Grid: Coordinate Rules for Translations FQ: What kind of coordinate rule $(x,y) \rightarrow (\Box, \Box)$ tells how to "move" any point to its image under a translation? Problem 3.3	Problem 4.2 Return of Super Sleuth: Similarity Transformations FQ: How can you use transformations to check whether two figures are similar or not? Problem 4.3
transformation by rotation? Problem 1.3 Sliding Around: Translations	decide that two triangles are probably congruent or not congruent? How do you go about planning transformations that 'move' one triangle onto another?	Spinning on a Grid: Coordinate Rules for Rotations FQ: What are the coordinate rules that describe "motion" of points on a grid under turns of 90° and 180°?	Checking Similarity Without Transformations FQ: What information about the sides and angles of two triangles will guarantee that they are similar?
FQ: What does it mean to say that a figure has slide or translational symmetry? How is each point related to its image under transformation by translation?	Problem 2.3 Minimum Measurement: Congruent Triangles II FQ: What is the smallest number of side	Problem 3.4 A Special Property of Translations and Half-Turns FQ: How are lines and their images under translations and half-turns related to each other?	Problem 4.4 Using Similar Triangles FQ: What facts about similar triangles allow you to find lengths in very large figures that you are unable to reach?
Problem 1.4 Properties of Transformations FQ: How, if at all, will the shape, size, and position of a figure change after each of the transformations – reflection, rotation, or translation?	and/or angle measurements needed to conclude two triangles are congruent?	Problem 3.5 Parallel Lines, Transversals, and Angle Sums FQ: When two parallel lines are cut by a transversal, what can be said about the angles formed? What is always true about the angle measures in a triangle? How do you know that your answers are correct?	
Mathematical Reflections	Mathematical Reflections	Mathematical Reflections	Mathematical Reflections
 How would you explain to someone how to make a design with: reflectional symmetry? to rotational symmetry? translational symmetry? 	1. How can you find a sequence of flips, turns, and slides to "move" one figure exactly onto another to show that they are congruent?	 What are the general forms of the coordinate rules for these transformations? reflection in the y-axis reflection in the x-axis counterclockwise rotation of 90° about the origin 	 How would you explain what it means for two geometric shapes to be similar using everyday words that most people could understand? technical terms of mathematics?
 2. How are points and their images related by each of these geometric transformations? 2a reflections in line m 	 What information about the sides and angles of two triangles will guarantee you can "move" one triangle onto the other? 	 1d. counterclockwise rotation of 180° about the origin 1e. translation that "moves" points <i>a</i> units horizontally and <i>b</i> units vertically 2. What is the effect of translation and half-turns on lines? 	 2a. Suppose you dilate a polygon to form a figure of a different size. How will the side lengths, angle measures, perimeters, areas, and slopes of the sides of the two figures be alike? How will they be different? 2b. How has your knowledge of dilations changed or
 2b. rotation of d° about point P 2c. translation with distance and direction set by the segment from point X to point X'. 3 How do reflections, rotations, and 	3. How could you convince someone that two given triangles are not congruent?	 How has your knowledge of transformations changed or extended what you already knew about the angles formed by two parallel lines and a transversal? 	a. What is the least amount of information you need in order to be sure that two triangles are similar?
translations change the size and shape of line segments, angles, and/or polygons, if at all?		4. How has your knowledge of transformations changed or extended what you already knew about the sum of the angle measures of a triangle?	4. How do you use similarity to find the side lengths of similar figures?