Grade 8 Student Work

Frogs, Fleas, and Painted Cubes Check Up

This document provides a summary of seven pieces of student work. Students prepared posters to show their thinking about using the distributive property to write equivalent forms of quadratic expressions. The students used the posters to share and discuss their ideas as a way to summarize Frogs, Fleas, and Painted Cubes: Investigation 2 and prepare for Check Up 2.

To streamline the communication in the classroom, students chose to use the same set of expressions on their posters. $x 2+5 x, x 2+16 x+28, x(x+3)$, and $(x+5)(x+2)$

MICHIGAN STATE UNIVERSITY
College of Natural Science

College of Natural Science

Group A

Students have some explanation of how they would find factored form. The students are accurate with their factoring. However, the descriptions are not clear. A reader would have to have a clear understanding of factoring to make sense of what the students are saying.

On the right side of the chart, students inaccurately explain expanding the monomial X binomial. When expanding the binomial X binomial, students show all of the multiplication that needs to be done.

Question(s) to the Group might be: "Can you explain a little more about how you found the expanded from of $x(x+3)$ to be $x 2+3 x$?"
T. MICHIGAN STATE UNVERSITY

College of Natural Science

MICHIGAN STATE
UNIVERSITY

College of Natural Science

Group B

On the top of the chart, students use arrows as a way to explain the multiplication when changing the expression from factored form to an equivalent expanded form.

On the bottom of the chart, students attempt to show how to factor. Students expand the binomial to show the common factor of x in each term. In this part of the poster, the arrows seem to carry a different meaning.

The diagram showing the factoring of the trinomial is less clear. Students show that the factored form of the trinomial is accurate. However, it is not clear how they found the two linear factors.

Question(s) to the Group might be: "What do the arrows on your chart mean? Do the arrows always mean the some thing?"

MICHIGAN STATE UNIVERSITY College of Natural Science

How to change factor form into exponede form.

$x^{2}+3 x$

How to change expanded form into factor farm.

Group C

$$
(x+2)(x+14)
$$

College of Natural Science

Group C

On the top of the chart, students use arrows as a way to explain the multiplication when changing the expression from factored form to an equivalent expanded form. Note that the action of the arrow is shown with at multiplication sign.

It is not clear that the students know how to simplify $x 2+2 x+5 x+10$. They may have left the expression in this form to "explain" the parts of the multiplication.

On the bottom of the chart, students attempt to show how to factor.

Expanding the binomial seems to be difficult to explain. It is not clear if the students understand why the variable in the term $5 x$ is no longer notated in the expression ($x+5$).

Question(s) to the Group might be: "Why does $5 x->5$? What happened to x ? Why is this accurate?"

The diagram with the factorization of the trinomial shows that these students know a process for factoring the expression.

MICHIGAN STATE

College of Natural Science

Group D

Students provide some detail about how they think about factoring a quadratic trinomial into two linear factors.

The students do not show all of the factors of 28. (That they have mislabeled as multiples.) It is not clear if students do not know all of the factors, or if they stopped finding factors because 2 and 14 satisfied their search.

This poster shows how to factor a quadratic trinomial. We have no evidence that these students can factor a quadratic binomial. Or, if they can expand quadratic expressions.

Question(s) to the Group might be: "How does this process change if we need to factor the binomial expression $x 2+16 x$?

MICHIGAN STATE UNIVERSITY College of Natural Science

Distributive Property

To get 28 you nave to And two numbers that 28 and they have to to dod together to equal 16.
so we got 14 and

OR

$$
\begin{aligned}
& x \cdot x=x^{2} \quad 2 x+5 x=7 y \\
& x+2=2 x \\
& 5+x=5 x \\
& 5 \cdot 2=10
\end{aligned}
$$

College of Natural Science

Group E

On the top of the chart, students use an area model to help explain how to factor quadratic expressions. The writing below each picture explains some of the students' thinking to finding the dimensions of the rectangles, which helps them find the linear factors of the quadratic expression.

To expand the expressions, students in this group write-out the multiplication, use arrows to show the multiplication, and draw an area model to help explain the multiplication. This group chose to show multiple representations to explain to the expanding of the expressions.

Question(s) to the Group might be: "Why did you choose to show the factoring using the area model, but when expanding you selected more than one way to think about it?"

College of Natural Science

Group F

Students show the use of the area model to accurately express both expanded and factored forms of the quadratic expressions.

There is one error in the last expression. Students write $x 2+7+10$. The middle term should be $7 x$. Since $2 x$ and $5 x$ are shown in the area sections of the rectangle, one might assume that this was just a writing error, not truly a mathematical misunderstanding.

Question(s) to the Group might be: "How did you use the area model, to help you think about and write equivalent expressions?"

MICHIGAN STATE UNIVERSITY
College of Natural Science
Distributive Property
How do you change an expression to exparaced Form?

$$
x(x+3)
$$

You take x and 9
multiply x^{2} t by the other $x, 400$ get x^{2}. Then take x, and
You take x and multiply multiply it bu 5 getting $5 x$. it by x getting x^{2}. Then you Then you take the 5 multimh take x again but multiply it it by x getting $5 x$ then 5 by 3 getting $3 x$. After you get that $x \begin{gathered}2=10 \text { for tum } \\ x^{2}+2 x+5 x+10\end{gathered}$ $\frac{\text { add to getter the } x^{2} \text { and } 3 x \text { getting }}{x^{2}+3 x}$

$$
x^{2}+3 x
$$

College of Natural Science

Group G

Students in this group use arrows and explain how to expand the quadratic expressions.

When explaining the distribution of a binomial over a binomial (binomial X binomial), students make an error of saying that they get 5x twice. However, the arrow notation and their expression show the correct terms: 5x and 2x.

Note that their use of arrows is different from some groups. The notation with the arrow shows the result of the multiplication.

Question(s) to the Group might be: "How does explaining how to expand an expression, help you think about how you might factor a quadratic expression? How might you start at the end and work backward?"

