BUTTERFLIES, PINWHEELS, AND WALLPAPER Symmetry and Transformations

Instructional Time and Investigations	24 days
Goals	Transformations: Describe types of transformations that relate points by the motions of reflections, rotations, and translations; and describe methods for identifying and creating symmetric plane figures. - Various transformations affect distances and angles of figures differently. These effects help you compare figures and determine the similarity or congruence between figures.
Common Core	Common Core Standards for Mathematical Practice MP.1: Make sense of problems and persevere in solving them. MP.2: Reason abstractly and quantitatively. MP.3: Construct viable arguments and critique the reasoning of others. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. MP.6: Attend to precision. MP.7: Look for and make use of structure. MP.8: Look for and express regularity in repeated reasoning.

- Inv. 1: Symmetry and Transformations (4 Problems)
- Inv. 2: Transformations and Congruence (3 Problems)
- Inv. 3: Transforming Coordinates (5 Problems)
- Inv. 4: Dilations and Similar Figures (4 Problems)

Congruence and Similarity: Understand congruence and similarity and explore necessary and sufficient conditions for establishing congruent and similar shapes.

- Two shapes are congruent if a specific sequence of rigid transformations will transform one shape to the other. Two figures are similar if a specific sequence of rigid transformations and dilation will transform one shape to the other.
- Properties of transformations, congruence, and similarity can be used to solve problems about shapes and measurements.

Common Core Content Standards

8.G.A.1: Verify experimentally the properties of rotations, reflections, and translations.
8.G.A.2: Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them.
8.G.A.3: Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.
8.G.A.4: Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them.
Also: 8.EE.B.6, 8.G.A.1a-c, 8.G.A. 5

BUTTERFLIES, PINWHEELS, AND WALLPAPER Symmetry and Transformations

	Content Connections to Other Units	
Goals of the Unit	Prior Work	Future Work
Transformations: Describe types of transformations that relate points by the motions of reflections, rotations, and translations; and describe methods for identifying and creating symmetric plane figures.	- Recognizing and completing mirror reflections (Shapes and Designs) - Recognizing and completing designs with rotation symmetry (Shapes and Designs) - Recognizing, analyzing, and producing tessellations (Shapes and Designs; Stretching and Shrinking)	- Recognizing symmetry in graphs of functions (Say It With Symbols; Function Junction; High School) - Applying the ideas of symmetry to other subjects, such as graphic design and architecture (High School)
Congruence and Similarity: Understand congruence and similarity and explore necessary and sufficient conditions for establishing congruent and similar shapes.	- Looking for regularity and using patterns to make predictions (all Connected Mathematics Units) - Relating similarity transformations to the concept of similarity (Stretching and Shrinking) - Performing and analyzing similarity transformations (Stretching and Shrinking) - Describing similarity transformations in words and with coordinate rules (Stretching and Shrinking) - Reasoning about angles formed by parallel lines and transversals (Shapes and Designs)	- Making inferences and predictions based on observation, and proving predictions (High School) - Describing symmetry in graphs, such as graphs of quadratic functions, periodic functions, and power functions (Say It With Symbols; Frogs, Fleas, and Painted Cubes; Function Junction; High School) - Reasoning about congruence theorems in geometry (High School) - Finding equations for similar and congruent circles (High School) - Using matrices to represent transformations (High School) - Proving theorems about lines and angles (High School)

