	MOVING STRAIGHT AHEAD Linear Relationships	
Instructional Time and Investigations	25 days	- Inv. 1: Walking Rates (4 Problems) - Inv. 2: Exploring Linear Relationships With Graphs and Tables (4 Problems) - Inv. 3: Solving Equations (5 Problems) - Inv. 4: Exploring Slope: Connecting Rates and Ratios (4 Problems)
Goals	Linear Relationships: Recognize problem situations in which two variables have a linear relationship. - Two variables are in a linear relationship if one variable is changing by a constant amount when the other variable changes by increments of 1 unit. - The rate of change in a linear relationship is represented by the slope of the line representing the relationship. - The equation $y=m x$ is a particular kind of linear relationship in which x and y are proportional to each other.	Equivalence: Understand that the equality sign indicates that two expressions are equivalent. - Solutions for linear equations of the form $y=m x+b$ are pairs of values (x, y) which make this equation true. Graphically, solution pairs are points on the graph of the line. - Properties of equality can be used to maintain equivalent expressions on each side of the equation when finding a solution. Determining which equivalent expression to use in solving a problem is important.
Common Core Standards	Common Core Standards for Mathematical Practice MP.1: Make sense of problems and persevere in solving them. MP.2: Reason abstractly and quantitatively. MP.3: Construct viable arguments and critique the reasoning of others. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. MP.6: Attend to precision. MP.7: Look for and make use of structure. MP.8: Look for and express regularity in repeated reasoning.	Common Core Content Standards 7.RP.A.2: Recognize and represent proportional relationships between quantities. 7.EE.A.1: Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients. 7.EE.A.2: Understand that rewriting an expression in different forms in a problem context can shed light on the problem and how the quantities in it are related. 7.EE.B.4: Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities. Also 7.RP.A.2a-d, 7.EE.B.3, 7.EE.B4a-b

MOVING STRAIGHT AHEAD Linear Relationships

Content Connections to Other Units

Goals of the Unit	Prior Work	Future Work
Linear Relationships: Recognize problem situations in which two variables have a linear relationship.	- Graphing data in the coordinate plane; using symbols to represent relationships between variables (Variables and Patterns; Accentuate the Negative; Comparing and Scaling) - Expressing relationships between variables in words, symbols, graphs, and tables (Variables and Patterns; Covering and Surrounding; Shapes and Designs; Comparing and Scaling) - Computing and interpreting ratios (Comparing Bits and Pieces; Decimal Ops; Stretching and Shrinking; Comparing and Scaling) - Finding rates of change in relationships between two variables (Variables and Patterns; Comparing and Scaling) - Understanding positive and negative rational numbers (Accentuate the Negative) - Graphing relationships between two variables (Variables and Patterns; Comparing and Scaling) - Finding values of the variables in a linear relationship using graphs or tables or numeric reasoning (Variables and Patterns; Comparing and Scaling) - Understanding the meaning of parallel and intersecting lines (Shapes and Designs)	- Identifying and interpreting patterns of change for exponential $(y=a x)$, quadratic $\left(y=a x^{2}+b x+c\right)$, and inverse variation relationships (e.g. $y=k / x$) (Thinking With Mathematical Models; Growing, Growing, Growing; Frogs, Fleas, and Painted Cubes; Say It With Symbols; Function Junction) - Writing and interpreting equations that represent linear, inverse, exponential, and quadratic relationships (Thinking With Mathematical Models; Growing, Growing, Growing; Frogs, Fleas, and Painted Cubes; Say It With Symbols; It's In the System; Function Junction) - Analyzing linear models and interpreting slope of lines representing linear relationships (Thinking With Mathematical Models; Growing, Growing, Growing) - Finding the slope of a line to determine an equation in $y=m x+b$ form (Thinking With Mathematical Models; Say It With Symbols; It's In the System) - Interpreting and constructing graphs of lines; determining the equation of lines (Thinking With Mathematical Models; Growing, Growing, Growing; Frogs, Fleas, and Painted Cubes; Say It With Symbols; It's In the System; Function Junction) - Graphing step and piecewise-defined functions (Function Junction) - Finding values of the variables in more complicated linear equations (Thinking With Mathematical Models; Say It With Symbols; It's in the System) - Finding values of the variables for exponential and quadratic relationships using tables, graphs, and symbolic methods (Growing, Growing, Growing; Frogs, Fleas, and Painted Cubes) - Solving systems of linear equations; interpreting, graphing, and solving inequalities (It's In the System) - Finding and interpreting points of intersection of two or more graphs of relationships from graphs or tables (Thinking With Mathematical Models; Growing, Growing, Growing; Frogs, Fleas, and Painted Cubes, Say It With Symbols; It's In the System) - Interpreting parallel and perpendicular lines (Looking for Pythagoras) - Analyzing equivalent linear and quadratic expressions (Frogs, Fleas, and Painted Cubes; Say It With Symbols) - Finding the solution to a system of linear equations and interpreting and graphing inequalities (It's In the System)
Equivalence: Understand that the equality sign indicates that two expressions are equivalent.	- Understanding inequalities (Comparing Bits and Pieces; Variables and Patterns; Accentuate the Negative) - Writing and interpreting equivalent numeric expressions (Prime Time; Variables and Patterns; Comparing and Scaling)	- Solving more complicated linear inequalities (It's In the System) - Writing and interpreting equivalent linear, exponential and quadratic expressions (Growing, Growing, Growing; Frogs, Fleas, and Painted Cubes; Say It With Symbols; It's In the System; Function Junction)

